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PREFACE 
 
 
This is a solutions manual to accompany the textbook DIFFERENTIAL EQUATIONS & 

LINEAR ALGEBRA (4th edition, 2018) by C. Henry Edwards, David E. Penney, and David T. 

Calvis.  We include solutions to most of the problems in the text.  The corresponding Student’s 

Solutions Manual contains solutions to most of the odd-numbered solutions in the text. 

 

Our goal is to support teaching of the subject of differential equations with linear algebra in every 

way that we can.  We therefore invite comments and suggested improvements for future printings of 

this manual, as well as advice regarding features that might be added to increase its usefulness in 

subsequent editions.  Additional supplementary material can be found at the Expanded Applications 

website listed below. 

 

Henry Edwards 
David Calvis 
 
h.edwards@mindspring.com 
dcalvis@bw.edu 
 
http://goo.gl/UYnW2g 
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CHAPTER 1 

FIRST-ORDER DIFFERENTIAL EQUATIONS 
SECTION 1.1 

DIFFERENTIAL EQUATIONS AND MATHEMATICAL MODELS 

The main purpose of Section 1.1 is simply to introduce the basic notation and terminology of dif-
ferential equations, and to show the student what is meant by a solution of a differential equation.  
Also, the use of differential equations in the mathematical modeling of real-world phenomena is 
outlined. 

Problems 1-12 are routine verifications by direct substitution of the suggested solutions into the 
given differential equations.  We include here just some typical examples of such verifications. 

3. If 1 cos 2y x  and 2 sin 2y x , then 1 2sin 2y x    2 2cos 2y x  , so 

1 14cos 2 4y x y     and 2 24sin 2 4y x y     .  Thus 1 14 0y y   and 2 24 0y y   . 

4. If 3
1

xy e  and 3
2

xy e , then 3
1 3 xy e  and 3

2 3 xy e  , so 3
1 19 9xy e y    and 

3
2 29 9xy e y   . 

5. If x xy e e  , then x xy e e   , so     2 .x x x x xy y e e e e e           Thus 

2 .xy y e    

6. If 2
1

xy e  and 2
2

xy x e , then 2
1 2 xy e   , 2

1 4 xy e  , 2 2
2 2x xy e x e    , and 

2 2
2 4 4 .x xy e x e       Hence 

     2 2 2
1 1 14 4 4 4 2 4 0x x xy y y e e e           

 and 

     2 2 2 2 2
2 2 24 4 4 4 4 2 4 0.x x x x xy y y e x e e x e x e               

8. If 1 cos cos 2y x x   and 2 sin cos 2y x x  , then 1 sin 2sin 2 ,y x x     

1 cos 4cos 2 ,y x x     2 cos 2sin 2y x x   , and 2 sin 4cos 2 .y x x      Hence 

   1 1 cos 4cos 2 cos cos 2 3cos 2y y x x x x x        

 and 
   2 2 sin 4cos 2 sin cos 2 3cos 2 .y y x x x x x         
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11. If 2
1y y x  , then 32y x    and 46 ,y x   so 

     2 2 4 3 25 4 6 5 2 4 0.x y x y y x x x x x           

 If 2
2 lny y x x  , then 3 32 lny x x x     and 4 45 6 lny x x x     , so 

     
   

2 2 4 4 3 3 2

2 2 2 2 2

5 4 5 6 ln 5 2 ln 4 ln

5 5 6 10 4 ln 0.

x y x y y x x x x x x x x x x

x x x x x x

    

    

        

      
 

13. Substitution of rxy e  into 3 2y y   gives the equation 3 2rx rxr e e , which simplifies 
to 3 2.r    Thus 2 / 3r  . 

14. Substitution of rxy e  into 4y y   gives the equation 24 rx rxr e e , which simplifies to 
24 1.r    Thus 1 / 2r   . 

15. Substitution of rxy e  into 2 0y y y     gives the equation 2 2 0rx rx rxr e r e e   , 
which simplifies to 2 2 ( 2)( 1) 0.r r r r        Thus 2r    or 1r  . 

16. Substitution of rxy e  into 3 3 4 0y y y     gives the equation 
23 3 4 0,rx rx rxr e r e e    which simplifies to 23 3 4 0r r   .  The quadratic formula then 

gives the solutions  3 57 6r    . 

The verifications of the suggested solutions in Problems 17-26 are similar to those in Problems 
1-12.  We illustrate the determination of the value of C only in some typical cases.  However, we 
illustrate typical solution curves for each of these problems. 

17. 2C   18. 3C   

  
−4 0 4

−4

0

4

x

y

(0, 2)

Problem 17

−5 0 5
−5

0

5

x

y

(0, 3)

Problem 18
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19. If   1xy x Ce  , then  0 5y   gives 1 5C   , so 6C  . 

20. If   1xy x C e x   , then  0 10y   gives 1 10C   , or 11C  . 

  

21. 7C  . 

22. If  ( ) lny x x C  , then  0 0y   gives ln 0C  , so 1C  . 

  

23. If 5 21
4( )y x x C x  , then  2 1y   gives 1 1

4 832 1C    , or 56C   . 

24. 17C  . 

−5 0 5
−10

−5

0

5

10

x

y

(0, 5)

Problem 19

−10 −5 0 5 10
−20

0

20

x

y

(0, 10)

Problem 20

−2 −1 0 1 2
−10

−5

0

5

10

x

y

(0, 7)

Problem 21

−20 −10 0 10 20
−5

0

5

x

y
(0, 0)

Problem 22
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25. If  3tany x C  , then  0 1y   gives the equation tan 1C  .  Hence one value of C is 
/ 4C  , as is this value plus any integral multiple of  . 

  

26. Substitution of x   and 0y   into  cosy x C x   yields    0 1C   , so 
C   . 

27. y x y    

28. The slope of the line through  ,x y  and  2,0x  is 0 2
/ 2

yy y x
x x

  


, so the differ-

ential equation is 2xy y  . 

0 1 2 3
−30

−20

−10

0

10

20

30

x

y (2, 1)

Problem 23

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−30

−20

−10

0

10

20

30

x

y

(1, 17)

Problem 24

−2 −1 0 1 2
−4

−2

0

2

4

x

y

(0, 1)

Problem 25

0 5 10
−10

−5

0

5

10

x

y (, 0)

Problem 26
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29. If m y  is the slope of the tangent line and m  is the slope of the normal line at ( , ),x y  
then the relation 1m m    yields    1 1 0m y y x      .  Solving for y  then 

gives the differential equation  1 y y x  . 

30. Here m y  and 2( ) 2xm D x k x    , so the orthogonality relation 1m m    gives 
the differential equation 2 1.xy    

31. The slope of the line through  ,x y  and ( , )y x  is    y x y y x     , so the differen-
tial equation is ( ) .x y y y x    

In Problems 32-36 we get the desired differential equation when we replace the “time rate of 
change” of the dependent variable with its derivative with respect to time t, the word “is” with 
the = sign, the phrase “proportional to” with k, and finally translate the remainder of the given 
sentence into symbols. 

32. dP dt k P  33. 2dv dt kv  

34.  250dv dt k v   35.  dN dt k P N   

36.  dN dt kN P N   

37. The second derivative of any linear function is zero, so we spot the two solutions 
  1y x   and ( )y x x  of the differential equation 0y  . 

38. A function whose derivative equals itself, and is hence a solution of the differential equa-
tion y y  , is ( ) xy x e . 

39. We reason that if 2y kx , then each term in the differential equation is a multiple of 2x .  
The choice 1k   balances the equation and provides the solution 2( )y x x . 

40. If y is a constant, then 0y  , so the differential equation reduces to 2 1y  .  This gives 
the two constant-valued solutions ( ) 1y x   and ( ) 1y x   . 

41. We reason that if xy ke , then each term in the differential equation is a multiple of xe .  
The choice 1

2k   balances the equation and provides the solution 1
2( ) xy x e . 

42. Two functions, each equaling the negative of its own second derivative, are the two solu-
tions   cosy x x  and ( ) siny x x of the differential equation y y   . 
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43. (a) We need only substitute  ( ) 1x t C kt   in both sides of the differential equation 
2x kx   for a routine verification. 

 (b) The zero-valued function ( ) 0x t   obviously satisfies the initial value problem 
2x kx  , (0) 0x  . 

44. (a) The figure shows typical graphs of solutions of the differential equation 21
2x x  . 

 (b) The figure shows typical graphs of solutions of the differential equation 21
2 .x x     

We see that—whereas the graphs with 1
2k   appear to “diverge to infinity”—each solu-

tion with 1
2k    appears to approach 0 as .t    Indeed, we see from the Problem 

43(a) solution  1
2( ) 1x t C t   that ( )x t   as 2t C .  However, with 1

2k    it is 

clear from the resulting solution  1
2( ) 1x t C t   that ( )x t  remains bounded on any 

bounded interval, but ( ) 0x t   as t  . 

  

45. Substitution of 1P   and 10P   into the differential equation 2P kP   gives 1
100 ,k   so 

Problem 43(a) yields a solution of the form  1
100( ) 1P t C t  .  The initial condition 

(0) 2P   now yields 1
2 ,C   so we get the solution 

1 100( ) 1 50
2 100

P t t t
 


. 

 We now find readily that 100P   when 49t   and that 1000P   when 49.9t  .  It ap-
pears that P  grows without bound (and thus “explodes”) as t approaches 50. 

 

0 1 2 3 4
0

1

2

3

4

5

t

x

Problem 44a

0 1 2 3 4
0

1

2

3

4

5

6

t

x

Problem 44b
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46. Substitution of 1v    and 5v   into the differential equation 2v kv   gives 1
25 ,k    so 

Problem 43(a) yields a solution of the form  ( ) 1 25v t C t  .  The initial condition 
(0) 10v   now yields 1

10 ,C   so we get the solution 

1 50( ) 1 5 2
10 25

v t t t
 


. 

 We now find readily that 1v   when 22.5t   and that 0.1v   when 247.5t  .  It ap-
pears that v  approaches 0 as t increases without bound.  Thus the boat gradually slows, 
but never comes to a “full stop” in a finite period of time. 

47. (a) (10) 10y   yields  10 1 10C  , so 101 10C  . 

 (b) There is no such value of C, but the constant function ( ) 0y x   satisfies the conditions 
2y y   and (0) 0y  . 

 (c) It is obvious visually (in Fig. 1.1.8 of the text) that one and only one solution curve 
passes through each point ( , )a b  of the xy-plane, so it follows that there exists a unique 
solution to the initial value problem 2y y  , ( )y a b . 

48. (b) Obviously the functions 4( )u x x   and 4( )v x x   both satisfy the differential equa-
tion 4 .xy y    But their derivatives 3( ) 4u x x    and 3( ) 4v x x    match at 0x  , where 
both are zero.  Hence the given piecewise-defined function  y x  is differentiable, and 

therefore satisfies the differential equation because  u x  and  v x  do so (for  0x   and 
0x  , respectively). 

 (c) If 0a   (for instance), then choose C  fixed so that 4C a b  .  Then the function 

 
4

4

if 0
if 0

C x x
y x

C x x




 
  

 

 satisfies the given differential equation for every real number value of C  
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SECTION 1.2 

INTEGRALS AS GENERAL AND PARTICULAR SOLUTIONS 

This section introduces general solutions and particular solutions in the very simplest situation 
— a differential equation of the form  y f x   — where only direct integration and evaluation 
of the constant of integration are involved.  Students should review carefully the elementary con-
cepts of velocity and acceleration, as well as the fps and mks unit systems. 

1. Integration of 2 1y x    yields   2( ) 2 1y x x dx x x C     .  Then substitution of  

0x  , 3y    gives 3 0 0 C C    , so   2 3y x x x   . 

2. Integration of  22y x    yields      2 31
32 2y x x dx x C     .  Then substitution 

of 2x  , 1y   gives 1 0 C C   , so    31
3 2 1y x x   . 

3. Integration of y x   yields   3/22
3y x x dx x C   .  Then substitution of 4x  , 

0y   gives 16
30 C  , so    3/22

3 8y x x  . 

4. Integration of 2y x   yields   2 1y x x dx x C    .  Then substitution of 1x  , 

5y   gives  5 1 C   , so   1 6y x x   . 

5. Integration of   1 22y x     yields     1 22 2 2y x x dx x C     .  Then substitu-

tion of  2x  , 1y    gives 1 2 2 C    , so   2 2 5y x x   . 

6. Integration of  1 22 9y x x    yields      1 2 3 22 21
39 9y x x x dx x C     .  Then 

substitution of 4x   , 0y   gives 31
30 (5) C  , so    3/221

3 9 125y x x     
. 

7. Integration of 2
10

1
y

x
 


 yields   1

2
10 10 tan

1
y x dx x C

x
  

 .  Then substitution of 

0x  , 0y   gives 0 10 0 C   , so   110 tany x x . 

8. Integration of cos 2y x   yields   1
2cos 2 sin 2y x x dx x C   .  Then substitution of  

0x  , 1y   gives 1 0 C  , so   1
2 sin 2 1y x x  . 
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9. Integration of
2

1
1

y
x

 


 yields 1

2

1( ) sin
1

y x dx x C
x

  
 .  Then substitution of 

0x  , 0y   gives 0 0 C  , so   1siny x x . 

10. Integration of xy xe   yields 

     1 1x u u xy x xe dx ue du u e x e C          , 

 using the substitution u x   together with Formula #46 inside the back cover of the 
textbook.  Then substituting 0x  , 1y   gives 1 1 ,C    so ( ) ( 1) 2.xy x x e     

11. If   50a t  , then   050 50 50 10v t dt t v t     .  Hence 

    2 2
050 10 25 10 25 10 20x t t dt t t x t t        . 

12. If   20a t   , then     020 20 20 15v t dt t v t        .  Hence 

    2 2
020 15 10 15 10 15 5x t t dt t t x t t           . 

13. If   3a t t , then   2 23 3
02 23 5v t t dt t v t     .  Hence 

   2 3 33 1 1
02 2 25 5 5x t t dt t t x t t       . 

14. If   2 1a t t  , then     2 2
02 1 7v t t dt t t v t t        .  Hence 

   2 3 31 1 1 1
03 2 3 27 7 7 4x t t t dt t t t x t t t           . 

15. If    24 3a t t  , then        2 3 34 4
3 34 3 3 3 37v t t dt t C t         (taking 

37C    so that  0 1v   ).  Hence 

       3 4 44 1 1
3 3 33 37 3 37 3 37 26x t t dt t t C t t           . 

16. If   1
4

a t
t




, then   1 2 4 2 4 5
4

v t dt t C t
t

      
  (taking 5C    so 

that  0 1v   ).  Hence 

       3/2 3/2 294 4
3 3 32 4 5 4 5 4 5x t t dt t t C t t            

 (taking 29 3C    so that  0 1x  ). 
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17. If     31a t t   , then        3 2 21 1 1
2 2 21 1 1v t t dt t C t             (taking 

1
2C   so that  0 0v  ).  Hence 

       2 1 11 1 1 1 1
2 2 2 2 21 1 1 1x t t dt t t C t t                 

 (taking 1
2C    so that  0 0x  ). 

18. If   50sin 5a t t , then   50sin 5 10cos5 10cos5v t t dt t C t       (taking 0C   so 

that  0 10v   ).  Hence 

  10cos5 2sin 5 2sin 5 10x t t dt t C t         

 (taking 10C    so that  0 8x  ). 

Students should understand that Problems 19-22, though different at first glance, are solved in 
the same way as the preceding ones, that is, by means of the fundamental theorem of calculus in 
the form      

0
0

t

t
x t x t v s ds    cited in the text.  Actually in these problems 

   
0

,
t

x t v s ds   since 0t  and  0x t  are each given to be zero. 

19. The graph of  v t  shows that   5 if 0 5
10 if 5 10

t
v t

t t
 

    
, so that 

  1
21

22

5 if 0 5
10 if 5 10

t C t
x t

t t C t
  

     
.  Now 1 0C   because  0 0x  , and continuity of 

 x t  requires that   5x t t  and   21
2210x t t t C    agree when 5t  .  This implies 

that 25
2 2C   , leading to the graph of  x t  shown. 

 Alternate solution for Problem 19 (and similarly for 20-22):  The graph of  v t  

shows that   5 if 0 5
10 if 5 10

t
v t

t t
 

    
.  Thus for 0 5t  ,    

0

t
x t v s ds   is given by 

0
5 5

t
ds t , whereas for 5 10t   we have 

    5

0 0 5

2 2 2

5

5 10

75 2525 10 25 10 10 .
2 2 2 2 2

t t

s t

s

x t v s ds ds s ds

s t ts t t




   

 
          
 
 

  
 

 The graph of  x t  is shown. 
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20. The graph of  v t  shows that   if 0 5
5 if 5 10
t t

v t
t

 
   

, so that 

 
21

12

2

if 0 5
5 if 5 10

t C t
x t

t C t
   

    
.  Now 1 0C   because  0 0x  , and continuity of  x t  

requires that   21
2x t t  and   25x t t C   agree when  5t  .  This implies that 

25
2 2C   , leading to the graph of  x t  shown. 

  

21. The graph of  v t  shows that   if 0 5
10 if 5 10
t t

v t
t t

 
    

, so that 

 
21

12
21

22

if 0 5
10 if 5 10

t C t
x t

t t C t
   

     
.  Now 1 0C   because  0 0x  , and continuity of 

 x t  requires that   21
2x t t  and   21

2210x t t t C    agree when 5t  .  This implies 

that 2 25C   , leading to the graph of  x t  shown. 

22. For 0 3t  , 5
3( )v t t , so   25

16x t t C  .  Now 1 0C   because  0 0x  , so 

  25
6x t t  on this first interval, and its right-endpoint value is   15

23x  . 

 For 3 7t  ,   5v t  , so   25x t t C    Now 15
2(3)x   implies that 15

2 2C   , so 

  15
25x t t   on this second interval, and its right-endpoint value is   55

27x  . 

 For 7 10t  ,  5
35 7v t    , so   5 50

3 3v t t   .  Hence   25 50
36 3x t t t C    , and 

55
2(7)x   implies that 290

3 6C   .  Finally,   21
6 ( 5 100 290)x t t t     on this third inter-

val, leading to the graph of  x t  shown. 

0 2 4 6 8 10
0

10

20

30

40

t

x (5, 25)

Problem 19

0 2 4 6 8 10
0

10

20

30

40

t

x

(5, 12.5)

Problem 20
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23.   9.8 49v t t   , so the ball reaches its maximum height ( 0v  ) after 5t   seconds.  Its 

maximum height then is      25 4.9 5 49 5 122.5 metersy     . 

24. 32v t   and 216 400y t   , so the ball hits the ground ( 0y  ) when 5 sect  , and 
then  32 5 160 ft/secv     . 

25. 210 m/sa    and 0 100 km/h 27.78 m/sv   , so 10 27.78v t   , and hence 
  25 27.78x t t t   .  The car stops when 0v  , that is 2.78 st  , and thus the distance 

traveled before stopping is  2.78 38.59 metersx  . 

26. 9.8 100v t    and 24.9 100 20y t t    . 

 (a) 0v   when 100 9.8 st  , so the projectile's maximum height is 

     2100 9.8 4.9 100 9.8 100 100 9.8 20 530y       meters. 

 (b) It passes the top of the building when    24.9 100 20 20y t t t     , and hence after 
100 4.9 20.41t    seconds. 

 (c) The roots of the quadratic equation   24.9 100 20 0y t t t      are 0.20, 20.61t   .  
Hence the projectile is in the air 20.61 seconds. 

27. 29.8 m/sa   , so 9.8 10v t    and 2
04.9 10y t t y    .  The ball hits the ground 

when 0y   and 9.8 10 60 m/sv t     , so 5.10 st  .  Hence the height of the building 
is 

   2
0 4.9 5.10 10 5.10 178.57 my    . 

0 2 4 6 8 10
0

10

20

30

40

t

x

(5, 12.5)

Problem 21

0 2 4 6 8 10
0

10

20

30

40

t

x

(3, 7.5)

(7, 27.5)

Problem 22
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28. 32 40v t    and 216 40 555y t t    .  The ball hits the ground ( 0y  ) when 
4.77 st  , with velocity  4.77 192.64 ft/sv v   , an impact speed of about 131 mph. 

29. Integration of 20.12 0.6dv dt t t   with  0 0v   gives   3 20.04 0.3v t t t  .  Hence 

 10 70 ft/sv  .  Then integration of 3 20.04 0.3dx dt t t   with  0 0x   gives 

  4 30.01 0.1x t t t  , so  10 200 ftx  .  Thus after 10 seconds the car has gone 200 ft 
and is traveling at 70 ft/s. 

30. Taking 0 0x   and 0 60 mph 88 ft/sv   , we get 88v at   , and 0v   yields 88t a .  
Substituting this value of t, as well as 176 ftx  , into 2 2 88x at t    leads to 

222 ft/sa  .  Hence the car skids for 88 22 4st   . 

31. If 220 m/sa    and 0 0x  , then the car's velocity and position at time t are given by 

020v t v    and 2
010x t v t   .  It stops when 0v   (so 0 20v t ), and hence when 

 2 275 10 20 10x t t t t     .  Thus 7.5 st  , so 

0 20 7.5 54.77 m/s 197 km/hrv    . 

32. Starting with 0 0x   and 4
0 50 km/h 5 10 m/hv    , we find by the method of Problem 

30 that the car's deceleration is   7 225 3 10 m/ha   .  Then, starting with 0 0x   and 
5

0 100 km/h 10 m/hv   , we substitute 0t v a  into 21
02x at v t    and find that 

60 mx   when 0v  .  Thus doubling the initial velocity quadruples the distance the car 
skids. 

33. If 0 0v   and 0 20y  , then v at   and 21
2 20y at   .  Substitution of 2t  , 0y   

yields 210ft/sa  .  If 0 0v   and 0 200y  , then 10v t   and 25 200y t   .  Hence 
0y   when 40 2 10 st    and 20 10 63.25 ft/sv     . 

34. On Earth: 032v t v   , so 0 32t v  at maximum height (when 0v  ).  Substituting 
this value of t and 144y   in 2

016y t v t   , we solve for 0 96ft/sv   as the initial 
speed with which the person can throw a ball straight upward. 

 On Planet Gzyx: From Problem 33, the surface gravitational acceleration on planet 
Gzyx is 210ft/sa  , so 10 96v t    and 25 96y t t   .  Therefore 0v   yields 

9.6st   and so  max 9.6 460.8fty y   is the height a ball will reach if its initial velocity 
is 96 ft/s . 
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35. If 0 0v   and 0y h , then the stone’s velocity and height are given by v gt   and 
20.5y gt h   , respectively.  Hence 0y   when 2t h g , so 

2 2v g h g gh    . 

36. The method of solution is precisely the same as that in Problem 30.  We find first that, on 
Earth, the woman must jump straight upward with initial velocity 0 12 ft/sv   to reach a 
maximum height of 2.25 ft.  Then we find that, on the Moon, this initial velocity yields a 
maximum height of about 13.58 ft. 

37. We use units of miles and hours.  If 0 0 0x v  , then the car’s velocity and position after 
t hours are given by v at  and 21

2x at , respectively.  Since 60v   when 5 6t  , the 
velocity equation yields .  Hence the distance traveled by 12:50 pm is 

 21
2 72 5 6 25 milesx     . 

38. Again we have v at  and 21
2x at .  But now 60v   when 35x  .  Substitution of 

60a t  (from the velocity equation) into the position equation yields 
  21

235 60 30t t t  , whence 7 6ht  , that is, 1:10 pm. 

39. Integration of   29 1 4Sy v x    yields   33 3 4Sy v x x C   , and the initial condi-

tion  1 2 0y    gives 3 SC v .  Hence the swimmers trajectory is 

    33 3 4 1Sy x v x x   .  Substitution of  1 2 1y   now gives 6mphSv  . 

40. Integration of  43 1 16y x    yields   53 48 5y x x C   , and the initial condition 

 1 2 0y    gives 6 5C  .  Hence the swimmers trajectory is 

    51 5 15 48 6y x x x   , 

 and so his downstream drift is  1 2 2.4milesy  . 

41. The bomb equations are 32a   , 32v t  , and 216 800Bs s t     with 0t   at the 
instant the bomb is dropped.  The projectile is fired at time 2,t   so its corresponding 
equations are 32a   ,   032 2v t v    , and    2

016 2 2Ps s t v t       for 2t   

(the arbitrary constant vanishing because  2 0Ps  ).  Now the condition 

  216 800 400Bs t t     gives 5t  , and then the further requirement that  5 400Ps   
yields 0 544 / 3 181.33 ft/sv    for the projectile’s needed initial velocity. 
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42. Let ( )x t  be the (positive) altitude (in miles) of the spacecraft at time t (hours), with 0t   
corresponding to the time at which its retrorockets are fired; let    v t x t  be the veloc-

ity of the spacecraft at time t.  Then 0 1000v    and  0 0x x  is unknown.  But the 

(constant) acceleration is 20000a   , so   20000 1000v t t   and 

  2
010000 1000x t t t x   .  Now   20000 1000 0v t t    (soft touchdown) when 

1
20 ht   (that is, after exactly 3 minutes of descent).  Finally, the condition 

     21 1 1
020 20 200 10000 1000x x     yields 0 25milesx   for the altitude at which the 

retrorockets should be fired. 

43. The velocity and position functions for the spacecraft are   0.0098Sv t t  and 

  20.0049Sx t t , and the corresponding functions for the projectile are 

  71
10 3 10Pv t c   and   73 10Px t t  .  The condition that S Px x  when the spacecraft 

overtakes the projectile gives 2 70.0049 3 10t t  , whence 
7 9

93 10 6.12245 106.12245 10 s 194 years
0.0049 (3600)(24)(365.25)

t       . 

 Since the projectile is traveling at 1
10  the speed of light, it has then traveled a distance of 

about 19.4 light years, which is about 171.8367 10  meters. 

44. Let 0a   denote the constant deceleration of the car when braking, and take 0 0x   for 
the car’s position at time 0t   when the brakes are applied.  In the police experiment 
with 0 25v   ft/s, the distance the car travels in t seconds is given by 

  21 88 25
2 60

x t at t    , 

 with the factor 88
60  used to convert the velocity units from mi/h to ft/s.  When we solve 

simultaneously the equations   45x t   and   0x t   we find that 21210
81 14.94 ft/sa   .  

With this value of the deceleration and the (as yet) unknown velocity 0v  of the car in-
volved in the accident, its position function is 

2
0

1 1210( )
2 81

x t t v t    . 

 The simultaneous equations   210x t   and ( ) 0x t   finally yield 
110

0 9 42 79.21ft/sv   , that is, almost exactly 54 miles per hour. 

45. Equation (10) gives 

   2 22 2 2 2 2
0 0 0 0 02v t v at v v a t atv v       2

0v 2 2
02a t atv  , 

 whereas by Eq. (11), 
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  2
0 0 0

12 2
2

a x t x a at v t x      0x 2 2
02a t av t    

 
, 

 proving the formula. 
 To apply this formula to Example 2, let 0x  denote (as in the example) the height of the 

lander above the lunar surface at the moment when the retrorockets should be activated.  
Thus 0 450v   .  We further take   0x t   and   0v t  , corresponding to the lander’s 
touch down on the planet’s surface.  Because 2.5a   , our formula gives 

   2 2
0450 0 2 2.5 0x       , or  2

0
450

40,500m
2 2.5

x


 


, in agreement with the ex-

ample. 
 

SECTION 1.3 

SLOPE FIELDS AND SOLUTION CURVES 

The instructor may choose to delay covering Section 1.3 until later in Chapter 1.  However, be-
fore proceeding to Chapter 2, it is important that students come to grips at some point with the 
question of the existence of a unique solution of a differential equation –– and realize that it 
makes no sense to look for the solution without knowing in advance that it exists.  It may help 
some students to simplify the statement of the existence-uniqueness theorem as follows: 

Suppose that the function ( , )f x y  and the partial derivative f y   are both con-
tinuous in some neighborhood of the point  ,a b .  Then the initial value problem 

 ,dy f x y
dx

 ,  y a b  

has a unique solution in some neighborhood of the point a. 

Slope fields and geometrical solution curves are introduced in this section as a concrete aid in 
visualizing solutions and existence-uniqueness questions.  Instead, we provide some details of 
the construction of the figure for the Problem 1 answer, and then include without further com-
ment the similarly constructed figures for Problems 2 through 9. 

1. The following sequence of Mathematica 7 commands generates the slope field and the 
solution curves through the given points.  Begin with the differential equation 

 / ,dy dx f x y , where 

f[x_, y_] := -y - Sin[x] 

 Then set up the viewing window 
a = -3; b = 3; c = -3; d = 3; 

 The slope field is then constructed by the command 
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dfield = VectorPlot[{1, f[x, y]}, {x, a, b}, {y, c, d}, 
PlotRange -> {{a, b}, {c, d}}, Axes -> True, Frame -> True, 
FrameLabel -> {TraditionalForm[x], TraditionalForm[y]}, 
AspectRatio -> 1, VectorStyle -> {Gray, "Segment"}, 
VectorScale -> {0.02, Small, None}, 
FrameStyle -> (FontSize -> 12), VectorPoints -> 21, 
RotateLabel -> False] 

 The original curve shown in Fig. 1.3.15 of the text (and its initial point not shown there) 
are plotted by the commands 
x0 = -1.9; y0 = 0; 
point0 = Graphics[{PointSize[0.025], Point[{x0, y0}]}]; 
soln = NDSolve[{y'[x] == f[x, y[x]], y[x0] == y0}, y[x], 

{x, a, b}]; 
curve0 = Plot[soln[[1, 1, 2]], {x, a, b}, PlotStyle -> 

{Thickness[0.0065], Blue}]; 
Show[curve0, point0] 

 (The Mathematica NDSolve command carries out an approximate numerical solution of 
the given differential equation.  Numerical solution techniques are discussed in Sections 
2.4–2.6 of the textbook.) 

 The coordinates of the 12 points are marked in Fig. 1.3.15 in the textbook.  For instance 
the 7th point is  2.5,1 .  It and the corresponding solution curve are plotted by the com-
mands 
x0 = -2.5; y0 = 1; 
point7 = Graphics[{PointSize[0.025], Point[{x0, y0}]}]; 
soln = NDSolve[{y'[x] == f[x, y[x]], y[x0] == y0}, y[x], 

{x, a, b}]; 
curve7 = Plot[soln[[1, 1, 2]], {x, a, b}, 

PlotStyle -> {Thickness[0.0065], Blue}]; 
Show[curve7, point7] 

 The following command superimposes the two solution curves and starting points found 
so far upon the slope field: 
Show[dfield, point0, curve0, point7, curve7] 

 We could continue in this way to build up the entire graphic called for in the problem.  
Here is an alternative looping approach, variations of which were used to generate the 
graphics below for Problems 1-10: 
points = {{-2.5,2}, {-1.5,2}, {-0.5,2}, {0.5,2}, {1.5,2}, 

{2.5,2}, {-2,-2}, {-1,-2}, {0,-2}, {1,-2}, {2,-2}, {-2.5,1}}; 
curves = {}; (* start with null lists *) 
dots = {}; 
Do [ 
 x0 = points[[i, 1]]; 
 y0 = points[[i, 2]]; 
 newdot = Graphics[{PointSize[0.025],Point[{x0, y0}]}]; 
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 dots = AppendTo[dots, newdot]; 
 soln = NDSolve[{y'[x] == f[x, y[x]],y[x0] == y0}, y[x], 
  {x, a, b}]; 
 newcurve = Plot[soln[[1, 1, 2]], {x, a, b}, 
  PlotStyle -> {Thickness[0.0065], Black}]; 
 AppendTo[curves, newcurve], 
 {i, 1, Length[points]}]; 
Show[dfield, curves, dots, PlotLabel -> Style["Problem 1", Bold, 

11]] 
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11. Because both   2 2, 2f x y x y  and   2, 4yD f x y x y   are continuous everywhere, the 
existence-uniqueness theorem of Section 1.3 in the textbook guarantees the existence of a 
unique solution in some neighborhood of 1x  . 

12. Both  , lnf x y x y  and f y x y    are continuous in a neighborhood of  1,1 , so the 
theorem guarantees the existence of a unique solution in some neighborhood of 1x  . 

13. Both   1/3,f x y y  and 2/31
3f y y    are continuous near  0,1 , so the theorem guar-

antees the existence of a unique solution in some neighborhood of 0x  . 

14. The function   1/3,f x y y  is continuous in a neighborhood of  0,0 , but 
2/31

3f y y    is not, so the theorem guarantees existence but not uniqueness in some 
neighborhood of 0x  .  (See Remark 2 following the theorem.) 

15. The function    1/2,f x y x y   is not continuous at  2, 2  because it is not even de-
fined if y x .  Hence the theorem guarantees neither existence nor uniqueness in any 
neighborhood of the point 2x  . 

16. The function    1/2,f x y x y   and   1/21
2f y x y       are continuous in a neigh-

borhood of  2,1 , so the theorem guarantees both existence and uniqueness of a solution 
in some neighborhood of 2x  . 
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17. Both    , 1f x y x y   and   21f y x y      are continuous near  0,1 , so the 
theorem guarantees both existence and uniqueness of a solution in some neighborhood of 

0x  . 

18. Neither    , 1f x y x y   nor   21f y x y      is continuous near  1,0 , so the 
existence-uniqueness theorem guarantees nothing. 

19. Both    2, ln 1f x y y   and  22 1f y y y     are continuous near  0,0 , so the 
theorem guarantees the existence of a unique solution near 0x  . 

20. Both   2 2,f x y x y   and 2f y y     are continuous near  0,1 , so the theorem 
guarantees both existence and uniqueness of a solution in some neighborhood of 0x  . 

21. The figure shown can be constructed using commands similar to those in Problem 1, 
above.  Tracing this solution curve, we see that  4 3y   .  (An exact solution of the dif-

ferential equation yields the more accurate approximation   44 3 3.0183y e    .) 

  

22. Tracing the curve in the figure shown, we see that  4 3y    .  An exact solution of the 

differential equation yields the more accurate approximation  4 3.0017y    . 

23. Tracing the curve in the figure shown, we see that  2 1y  .  A more accurate approxima-

tion is  2 1.0044y  . 
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24. Tracing the curve in the figure shown, we see that  2 1.5y  .  A more accurate approx-

imation is  2 1.4633y  . 

25. The figure indicates a limiting velocity of 20 ft/sec — about the same as jumping off a 
1
46 -foot wall, and hence quite survivable.  Tracing the curve suggests that   19v t   

ft/sec when t is a bit less than 2 seconds.  An exact solution gives 1.8723t   then. 

26. The figure suggests that there are 40 deer after about 60 months; a more accurate value is 
61.61t  .  And it’s pretty clear that the limiting population is 75 deer. 
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27. a) It is clear that  y x  satisfies the differential equation at each x with x c  or x c
,and by examining left- and right-hand derivatives we see that the same is true at x c .  
Thus  y x  not only satisfies the differential equation for all x, it also satisfies the given 
initial value problem whenever 0c  .  The infinitely many solutions of the initial value 
problem are illustrated in the figure.  Note that  , 2f x y y  is not continuous in any 
neighborhood of the origin, and so Theorem 1 guarantees neither existence nor unique-
ness of solution to the given initial value problem.  As it happens, existence occurs, but 
not uniqueness. 

 b) If 0b  , then the initial value problem 2y y  ,  0y b  has no solution, because 
the square root of a negative number would be involved.  If 0b  , then we get a unique 
solution curve through  0,b  defined for all x by following a parabola (as in the figure, 
in black) — down (and leftward) to the x-axis and then following the x-axis to the left.  
Finally if 0b  , then starting at  0,0  we can follow the positive x-axis to the point 

 ,0c  and then branch off on the parabola  2y x c  , as shown in gray.  Thus there are 
infinitely many solutions in this case. 
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28. The figure makes it clear that the initial value problem xy y  ,  y a b  has a unique 
solution if 0a  , infinitely many solutions if 0a b  , and no solution if 0a   but 

0b   (so that the point  ,a b  lies on the positive or negative y-axis).  Each of these con-
clusions is consistent with Theorem 1. 

29. As with Problem 27, it is clear that  y x  satisfies the differential equation at each x with 
x c  or x c , and by examining left- and right-hand derivatives we see that the same is 
true at x c .  Looking at the figure on the left below, we see that if, for instance, 0b  , 
then we can start at the point  ,a b  and follow a branch of a cubic down to the x-axis, 
then follow the x-axis an arbitrary distance before branching down on another cubic.  
This gives infinitely many solutions of the initial value problem 2/33y y  ,  y a b  that 

are defined for all x.  However, if 0b  , then there is only a single cubic  3y x c   

passing through  ,a b , so the solution is unique near x a  (as Theorem 1 would pre-
dict). 
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30. The function  y x  satisfies the given differential equation on the interval c x c    , 

since    sin 0y x x c      there and thus 

     2 2 21 1 cos sin siny x c x c x c y             . 

 Moreover, the same is true for x c  and x c    (since 2 1y   and 0y   there), and at 
,x c c    by examining one-sided derivatives.  Thus  y x  satisfies the given differen-

tial equation for all x. 

 If 1b  , then the initial value problem 21y y    ,  y a b  has no solution, because 

the square root of a negative number would be involved.  If 1b  , then there is only one 

curve of the form  cosy x c   through the point  ,a b , giving a unique solution.  But 
if 1b   , then we can combine a left ray of the line 1,y    a cosine curve from the line 

1y    to the line 1y   , and then a right ray of the line 1.y     Looking at the figure, 
we see that this gives infinitely many solutions (defined for all x) through any point of the 
form  , 1a  . 

31. The function    
1 if / 2

sin if / 2 / 2
1 if / 2

x c
y x x c c x c

x c


 



  
     
  

 satisfies the given differential 

equation on the interval 
2 2

c x c     , since    cos 0y x x c     there and thus 

     2 2 21 1 sin cos cosy x c x c x c y         . 
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 Moreover, the same is true for 
2

x   and 
2

x c    (since 2 1y   and 0y   there), and 

at ,
2 2

x c    by examining one-sided derivatives.  Thus  y x  satisfies the given dif-

ferential equation for all x. 

 If 1b  , then the initial value problem 21y y   ,  y a b  has no solution because 

the square root of a negative number would be involved.  If 1b  , then there is only one 

curve of the form  siny x c   through the point  ,a b ; this gives a unique solution.  
But if 1b   , then we can combine a left ray of the line 1,y    a sine curve from the 
line 1y    to the line 1y   , and then a right ray of the line 1.y     Looking at the 
figure, we see that this gives infinitely many solutions (defined for all x) through any 
point of the form  , 1a  . 

  

32. The function  y x  satisfies the given differential equation for 2x c , since 

   24 4y x x x c x y     there.  Moreover, the same is true for 2x c  (since 

0y y   there), and at x c   by examining one-sided derivatives.  Thus  y x  satis-
fies the given differential equation for all x. 

 Looking at the figure, we see that we can piece together a “left half” of a quartic for x 
negative, an interval along the x-axis, and a “right half” of a quartic curve for x positive.  
This makes it clear that the initial value problem 4y x y  ,  y a b  has infinitely 
many solutions (defined for all x) if 0b  .  There is no solution if 0b   because this 
would involve the square root of a negative number. 
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33. Looking at the figure provided in the answers section of the textbook, it suffices to ob-
serve that, among the pictured curves  / 1y x cx   for all possible values of c, 

 there is a unique one of these curves through any point not on either coordinate axis; 
 there is no such curve through any point on the y-axis other than the origin; and 
 there are infinitely many such curves through the origin (0,0). 

 But in addition we have the constant-valued solution   0y x   that “covers” the x-axis.  It 

follows that the given differential equation has near  ,a b  

 a unique solution if 0a  ; 
 no solution if 0a   but 0b  ; 
 infinitely many different solutions if 0a b  . 

 Once again these findings are consistent with Theorem 1. 

34. (a) With a computer algebra system we find that the solution of the initial value problem  
1y y x    ,  1 1.2y     is   10.2 xy x x e   , whence  1 0.4778y   .  With the 

same differential equation but with initial condition  1 0.8y     the solution is 

  10.2 xy x x e   , whence  1 2.4778y   

 (b) Similarly, the solution of the initial value problem 1y y x    , ( 3) 3.01y     is  
  30.01 xy x x e   , whence  3 1.0343y   .  With the same differential equation but 

with initial condition  3 2.99y     the solution is   30.01 xy x x e   , whence 

 3 7.0343y  .  Thus close initial values  3 3 0.01y      yield  3y values that are far 
apart. 

35. (a) With a computer algebra system we find that the solution of the initial value problem  
1y x y    ,  3 0.2y     is   32.8 xy x x e   , whence  2 2.0189y  .  With the 

same differential equation but with initial condition  3 0.2y     the solution is 

  33.2 xy x x e   , whence   2 2.0216y  . 

 (b) Similarly, the solution of the initial value problem 1y x y    ,  3 0.5y     is 

  32.5 xy x x e   , whence  2 2.0168y  .  With the same differential equation but with 

initial condition  3 0.5y     the solution is   33.5 xy x x e   , whence  2 2.0236y  .  

Thus the initial values  3 0.5y     that are not close both yield  2 2.02y  . 
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SECTION 1.4 

SEPARABLE EQUATIONS AND APPLICATIONS 

Of course it should be emphasized to students that the possibility of separating the variables is 
the first one you look for.  The general concept of natural growth and decay is important for all 
differential equations students, but the particular applications in this section are optional.  Torri-
celli’s law in the form of Equation (24) in the text leads to some nice concrete examples and 
problems. 

Also, in the solutions below, we make free use of the fact that if C is an arbitrary constant, then 
so is 5 3C , for example, which we can (and usually do) replace simply with C itself.  In the 
same way we typically replace Ce  by C, with the understanding that C is then an arbitrary non-
zero constant. 

1. For 0y   separating variables gives 2dy xdx
y
   , so that 2ln y x C   , or 

  2 2x C xy x e Ce     , where C is an arbitrary nonzero constant.  (The equation also has 
the singular solution 0y  .) 

2. For 0y   separating variables gives 2 2dy x dx
y

   , so that 21 x C
y

    , or 

  2
1y x

x C



.  (The equation also has the singular solution 0y  .) 

3. For 0y   separating variables gives sindy x dx
y
  , so that ln cosy x C   , or 

  cos cosx C xy x e Ce     , where C is an arbitrary nonzero constant.  (The equation also 
has the singular solution 0y  .) 

4. For 0y   separating variables gives 4
1

dy dx
y x


  , so that  ln 4ln 1y x C   , or 

   41y x C x  , where C is an arbitrary nonzero constant.  (The equation also has the 
singular solution 0y  .) 

5. For 1 1y    and 0x   separating variables gives 
2

1
21

dy dx
xy


  , so that 

1sin y x C   , or    siny x x C  .  (The equation also has the singular solutions 

1y   and 1y   .) 
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6. For , 0x y   separating variables gives 3dy x dx
y
  , so that 3/22 2y x C  , or 

   23/2y x x C  .  For , 0x y   we write   3dy x y
dx

   , leading to 

3dy x dx
y
 

  , or  3/22 2y x C      , or    
23/2y x x C      . 

7. For 0y   separating variables gives 1/3
1/3 4dy x dx

y
  , so that 2/3 4/33

2 3y x C  , or 

   3/24/32y x x C  .  (The equation also has the singular solution 0y  .) 

8. For 
2

y k   , k integer, separating variables gives cos 2y dy x dx  , so that 

2sin y x C  , or    1 2siny x x C  . 

9. For 0y   separating variables and decomposing into partial fractions give 

2
2 1 1

1 1 1
dy dx dx
y x x x
  

     , so that ln ln 1 ln 1y x x C     , or 

1
1

xy C
x




, where C is an arbitrary positive constant, or   1
1

xy x C
x




, where C is an 

arbitrary nonzero constant.  (The equation also has the singular solution 0y  .) 

10. For 1y    and 1x    separating variables gives 
   2 2

1 1
1 1

dy dx
y x


   , so that 

1 1
1 1

C
y x

  
 

, or 
 

1 11 1 1 1
1

xy
C xC

x

  
 



, or finally 

   
 

 
 
 

1 1 1 11 1
1 1 1 1 1 1

x C x x C xxy x
C x C x C x

           
     

, 

 where C is an arbitrary constant.  (The equation also has the singular solution 1y   .) 

11. For 0y   separating variables gives 3
dy x dx
y

  , so that 
2

2
1

2 2
x C

y
   , or 

    1/22y x C x


  , where C is an arbitrary constant.  Likewise     1/22y x C x


    for 
0y  .  (The equation also has the singular solution 0y  .) 
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12. Separating variables gives 2 1
y dy x dx

y


  , so that  2 21 1ln 1
2 2

y x C   , or 

22 1 xy Ce  , or 
2

1xy Ce   , where C is an arbitrary nonzero constant. 

13. Separating variables gives 
3

4 cos
1

y dy x dx
y


  , so that  41 ln 1 sin

4
y x C   , where 

C is an arbitrary constant. 

14. For , 0x y   separating variables gives 1 1y dy x dx    , so that 

3/2 3/22 2
3 3

y y x x C    , where C is an arbitrary constant. 

15. For 0x   and 20,
2

y   separating variables gives 2 4 2
2 1 1 1dy dx
y y x x

    , so that 

3
2 1 1ln

3
x C

y y x
     , where C is an arbitrary constant. 

16. Separating variables gives 2tan
1

xy dy dx
x


  , so that  21ln cos ln 1

2
y x C    , or 

2sec 1y C x  , or    1 2sec 1y x C x  , where C is an arbitrary positive constant. 

17. Factoring gives   1 1 1y x y xy x y        , and then for 1y    separating varia-

bles gives 1 1
1

dy x dx
y

 
  , so that 21ln 1

2
y x x C    , where C is an arbitrary 

constant.  (The equation also has the singular solution 1y   .) 

18. Factoring gives   2 2 2 2 2 2 21 1 1x y x y x y x y        , and then for 0x   separating 

variables gives 2 2
1 1 1

1
dy dx

y x
 

  , so that 1 1tan y x C
x

     , or 

  1tany x C x
x

    
 

, where C is an arbitrary nonzero constant. 

19. For 0y   separating variables gives 1 xdy e dx
y

  , so that ln xy e C  , or 

 exp xy C e , where C is an arbitrary positive constant, or finally  exp xy C e , 

where C is an arbitrary nonzero constant.  The initial condition  0 2y e  implies that 

 0exp 2C e e  , or 2C  , leading to the particular solution    2exp xy x e . 
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20. Separating variables gives 2
2

1 3
1

dy x dx
y


  , or 1 3tan y x C   .  The initial condi-

tion  0 1y   implies that
4

C  , leading to the particular solution   3tan
4

y x x    
 

. 

21. For 4x   separating variables gives 
2

2
16

xy dy dx
x


  , so that 

2 2 16y x C   .  The initial condition  5 2y   implies that 1C  , leading to the 

particular solution   21 16y x x   . 

22. For 0y   separating variables gives 31 4 1dy x dx
y

   , so that 4ln y x x C   , or 

4x xy Ce  , where C is an arbitrary positive constant, or 
4x xy Ce  , where C is an arbi-

trary nonzero constant.  The initial condition  1 3y    implies that 3C   , leading to 

the particular solution   4
3 x xy x e   . 

23. Rewriting the differential equation as 2 1dy y
dx

  , we see that for 1
2

y   separating vari-

ables gives 1
2 1

dy dx
y


  , so that 1 ln 2 1

2
y x C   , or 22 1 xy Ce  , where C is 

an arbitrary positive constant, or finally 22 1 xy Ce  , which is to say  21 1
2

xy Ce  , 

where C is an arbitrary nonzero constant.  The initial condition  1 1y   implies that 

2
1C
e

 , leading to the particular solution    2 2 2
2

1 1 11 1
2 2

x xy x e e
e

     
 

. 

24. For 0y   and 0 x   , separating variables gives 1 cotdy x dx
y

  , so that 

 lny ln sin x C  , or siny C x , where C is an arbitrary positive constant.  The initial 

condition 
2 2

y     
 

 implies that 
2

C  , leading to the particular solution sin
2

y x . 

25. Rewriting the differential equation as 22dyx x y y
dx

  , we see that for , 0x y   separating 

variables gives 1 12dy x dx
y x

   , so that 2ln lny x x C   , or 
2xy C x e , where 

C is an arbitrary positive constant, or 
2xy Cxe , where C is an arbitrary nonzero con-
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stant.  The initial condition  1 1y   implies that 1C
e

 , leading to the particular solution 

  2 1xy x xe  . 

26. For 0y   separating variables gives 2
2

1 2 3dy x x dx
y

   , so that 2 31 x x C
y

    , or 

2 3
1y

x x C


 
.  The initial condition  1 1y    implies that 1C   , leading to the par-

ticular solution   2 3
1

1
y x

x x


 
. 

27. Separating variables gives 26y xe dy e dx  , so that 23y xe e C  , or  2ln 3 xy e C  .  

The initial condition  0 0y   implies that 2C   , leading to the particular solution 

   2ln 3 2xy x e  . 

28. For 0x   and 
2

y k   , k integer, separating variables gives 2 1sec
2

y dy dx
x

  , 

so that tan y x C  , or    1tany x x C  .  The initial condition  4
4

y   im-

plies that 1C   , leading to the particular solution    1tan 1y x x  . 

29. (a) For 0y   separation of variables 

gives the general solution 2
1 dy dx
y

 

, so that 1 x C
y

   , or   1y x
C x




. 

 (b) Inspection yields the singular solu-
tion   0y x   that corresponds to no 
value of the constant C. 

 (c) The figure illustrates that there is a 
unique solution curve through every 
point in the xy-plane. 

30. The set of solutions of  2 4y y   is the 
union of the solutions of the two differ-
ential equations 2y y   , where 

0.y    For 0y   separation of variables applied to 2y y   gives 1 2dy dx
y

  , so 

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

x

y

(a, b)

Problem 29c
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that y x C  , or    2y x x C  ; replacing C with C  gives the solution family indi-

cated in the text.  The same procedure applied to 2y y    leads to 

     2 2y x x C x C     , again the same solution family (although see Problem 31 

and its solution).  In both cases the equation also has the singular solution   0y x  , 
which corresponds to no value of the constant C. 

 (a) The given differential equation  2 4y y   has no solution curve through the point 

 ,a b  if 0b  , simply because  2 0y  . 

 (b) If 0b  , then we can combine branches of parabolas with segments along the x-axis 
(in the manner of Problems 27-32, Section 1.3) to form infinitely many solution curves 
through  ,a b  that are defined for all x. 

 (c) Finally, if 0b  , then near  ,a b  there are exactly two solution curves through this 

point, corresponding to the two indicated parabolas through  ,a b , one ascending, and 
one descending, with increasing x.  (Again, see Problem 31.) 

31. As noted in Problem 30, the solutions of the differential equation  2 4dy dx y  consist 

of the solutions of 2dy dx y  together with those of 2dy dx y  , and again we 
must have 0y  .  Imposing the initial condition  y a b , where 0b  , upon the general 

solution    2y x x C   found in Problem 30 gives  2b a C  , which leads to the two 

values C a b  , and thus to the two particular solutions    2
y x x a b   .  For 

these two particular solutions we have   2y a b   , where    corresponds to 

2dy dx y  and    corresponds to 2dy dx y  .  It follows that whereas the solu-

tions of  2 4dy dx y  through  ,a b  contain two parabolic segments, one ascending 

and one descending from left to right, the solutions of 2dy dx y  through  ,a b  (the 
black curves in the figure) contain only ascending parabolic segments, whereas for 

2dy dx y   the (gray) parabolic segments are strictly descending.  Thus the answer to 
the question is “no”, because the descending parabolic segments represent solutions of 
 2 4dy dx y  but not of 2dy dx y .  From all this we arrive at the following answers 
to parts (a)-(c): 

 (a) No solution curve if 0b  ; 
 (b) A unique solution curve if 0b  ; 
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 (c) Infinitely many solution curves if 0b  , because in this case (as noted in the solution 
for Problem 30) we can pick any c a  and define the solution 

   2

0 if 

if 

x c
y x

x c x c

 
 

. 

  

32. For 1y   separation of variables gives 
2

1
1

dy dx
y y


  .  We take the inverse secant 

function to have range 0, ,
2 2
          

, so that 1

2

1sec
1

d y
dy y y

 


, 1y  .  Thus if 

1y  , then the solutions of the differential equation are given by 1secx y C  , or 

   secy x x C  , where 
2

C x C    .  If instead 1y   , then the solutions are given 

by 1secx y C   , or    secy x C x  , where 
2

C x C     .  Finally, the equa-

tion also has the singular solutions   1y x    and   1y x   .  This leads to the follow-
ing answers for (a)-(c): 

 (a) If 1 1b   , then the initial value problem has no solution, because the square root of 
a negative number would be involved. 

 (b) As the figure illustrates, the initial value problem has a unique solution if 1b  . 
  

−15 −10 −5 0 5 10 15
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 (c) If 1b   (and similarly if 1b   ), then we can pick any c a  and define the solution 

   

1 if 

sec if 
2

x c
y x

x c c x c 


     

. 

 So we see that if 1b   , then the initial value problem has infinitely many solutions. 

33. The population growth rate is  ln 30000 25000 10 0.01823k   , so the population of 

the city t years after 1960 is given by   0.0182325000 tP t e .  The expected year 2000 pop-

ulation is then   0.01823 4040 25000 51840P e   . 

34. The population growth rate is  ln 6 10 0.17918k   , so the population after t hours is 

given by   0.17918
0

tP t P e .  To find how long it takes for the population to double, we 
therefore need only solve the equation 0.17918

0 02 tP P e  for t, finding 
 ln 2 0.17198 3.87t    hours. 

35. As in the textbook discussion of radioactive decay, the number of 14C  atoms after t years 
is given by   0.0001216

0
tN t N e .  Hence we need only solve the equation 

0.00012161
0 06

tN N e  for the age t of the skull, finding ln 6 14735
0.0001216

t    years. 

36. As in Problem 35, the number of 14C  atoms after t years is given by 
  10 0.00012165.0 10 tN t e  .  Hence we need only solve the equation 

10 10 0.00012164.6 10 5.0 10 te    for the age t of the relic, finding 
 ln 5.0 4.6 0.0001216 686t      years.  Thus it appears not to be a genuine relic of the 

time of Christ 2000 years ago. 

37. The amount in the account after t years is given by   0.085000 tA t e .  Hence the amount 

in the account after 18 years is given by   0.08 1818 5000 21,103.48A e    dollars. 

38. When the book has been overdue for t years, the fine owed is given in dollars by 
  0.050.30 tA t e .  Hence the amount owed after 100 years is given by 

  0.05 100100 0.30 44.52A e    dollars. 

39. To find the decay rate of this drug in the dog’s blood stream, we solve the equation 
51

2
ke  (half-life 5 hours) for k, finding  ln 2 5 0.13863k   .  Thus the amount in the 

dog’s bloodstream after t hours is given by   0.13863
0

tA t A e .  We therefore solve the 
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equation   0.13863
01 50 45 2250A A e     for 0A , finding 0 2585A  mg, the amount to 

anesthetize the dog properly. 

40. To find the decay rate of radioactive cobalt, we solve the equation 5.271
2

ke  (half-life 
5.27 years) for  ln 2 5.27 0.13153k   .  Thus the amount of radioactive cobalt left af-

ter t years is given by   0.13153
0

tA t A e .  We therefore solve the equation 

  0.13153
0 00.01tA t A e A   for t, finding  ln100 0.13153 35.01t    years.  Thus it will 

be about 35 years until the region is again inhabitable. 

41. Taking 0t   when the body was formed and t T  now, we see that the amount  Q t  of 
238 U  in the body at time t (in years) is given by   0

ktQ t Q e , where 

   9ln 2 4.51 10k   .  The given information implies that 
0

( ) 0.9
( )

Q T
Q Q T




.  Upon sub-

stituting   0
ktQ t Q e  we solve readily for 19 9kTe  , so that 

    91 ln 19 9 4.86 10T k   .  Thus the body was formed approximately 4.86 billion  
years ago. 

42. Taking 0t   when the rock contained only potassium and t T  now, we see that the 
amount  Q t  of potassium in the rock at time t (in years) is given by   0

ktQ t Q e , 

where    9ln 2 1.28 10k   .  The given information implies that the amount  A t  of 

argon at time t is    1
09 [ ]A t Q Q t   and also that    A T Q T .  Thus 

0 ( ) 9 ( )Q Q T Q T  .  After substituting   0
kTQ T Q e  we readily solve for 

   9 9ln10 ln 2 1.28 10 4.25 10T      .  Thus the age of the rock is about 1.25 billion 
years. 

43. Because 0A   in Newton’s law of cooling, the differential equation reduces to T kT  
, and the given initial temperature then leads to   25 ktT t e .  The fact that  20 15T   

yields    1 20 ln 5 3k  , and finally we solve the equation 5 25 kte  for t to find 
ln5 63t k   min. 

44. The amount of sugar remaining undissolved after t minutes is given by   0
ktA t A e ; we 

find the value of k by solving the equation   0 01 0.75kA A e A   for k, finding 
ln 0.75 0.28768k    .  To find how long it takes for half the sugar to dissolve, we 

solve the equation   1
0 02

ktA t A e A   for t, finding  ln 2 0.28768 2.41t    min. 
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45. (a) The light intensity at a depth of x meters is given by   1.4
0

xI x I e .  We solve the 

equation   1.4 1
0 02

xI x I e I   for x, finding  ln 2 1.4 0.495x    meters. 

 (b) At depth 10 meters the intensity is   1.4 10 7
0 010 (8.32 10 )I I e I     , that is, 0.832 of 

one millionth of the light intensity 0I  at the surface. 

 (c) We solve the equation   1.4
0 00.01xI x I e I   for x, finding  ln100 1.4 3.29x    

meters. 

46. Solving the initial value problem shows that the pressure at an altitude of x miles is given 
by   0.229.92 xp x e  inches of mercury. 

 (a) Hence the pressure at altitude 10000 ft is  10000 5280 20.49p   inches of mercury, 

and likewise the pressure at altitude 30000 ft is  30000 5280 9.60p   inches of mercu-
ry. 

 (b) To find the altitude where 15p   inches of mercury we solve the 0.229.92 15xe   for 
x¸ finding  ln 29.92 15 0.2 3.452 miles 18,200 ftx    . 

47. If  N t  denotes the number of people (in thousands) who have heard the rumor after t 

days, then the initial value problem is  100N k N   ,  0 0N  .  Separating variables 

leads to  ln 100 N kt C    , and the initial condition (0) 0N   gives ln100C  .  

Then 100 100 ktN e  , so    100 1 ktN t e  .  Substituting  7 10N   and solving for 

k gives  ln 100 90 7 0.01505k   .  Finally, 50,000 people have heard the rumor after  

(ln 2) / 46.05t k   days, by solving the equation  100 1 50kte   for t. 

48. Let  8N t  and  5N t  be the numbers of 238 U  and 235 U  atoms, respectively, at time t (in 

billions of years after the creation of the universe).  Then  8 0
ktN t N e  and 

 5 0
ctN t N e , where 0N  is the initial number of atoms of each isotope.  Also, 

 ln 2 4.51k   and  ln 2 0.71c   from the given half-lives.  Since  
 

8

5

137.7
N t
N t

  at 

present, dividing the equations for  8N t  and  5N t  shows that ( ) 137.7c k te    at pre-

sent, and solving for t gives    ln137.7 5.99t c k   .  Thus we get an estimate of 
about 6 billion years for the age of the universe. 

49. Newton’s law of cooling gives  70dT k T
dt

  , and separating variables and integrating 

lead to  ln 70T kt C    .  The initial condition  0 210T   gives ln140C  , and 
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then  30 140T   gives ln 70 30 ln140k   , or  ln 2 30k  , so that 

  70 140 70kt C ktT t e e      .  Finally, setting   100T t   gives 140 70 100kte   , or 

 ln 14 3 66.67t k     minutes, or 66 minutes and 40 seconds. 

50. (a) The initial condition implies that   10 ktA t e .  The fact that  A t  triples every 7.5 

years implies that 15 215
230 ( ) 10 kA e  , which gives 15 2 3ke  , or 2 152 ln 3 ln 3

15
k   .  

Thus     2 1510 10 3
tk tA t e   . 

 (b) After 5 months we have   2/35 10 3 20.80 puA    . 

 (c)   100A t   gives 2 1510 3 100t  , or 15 ln10 15.72
2 ln 3

t     years. 

51. (a) The initial condition gives   15 ktA t e , and then  5 10A   implies that 15 10kte  , 

or 3
2

kte  , or 1 3ln
5 2

k  .  Thus 

 
5 53 3 215exp ln 15 15

5 2 2 3

t ttA t


             
     

. 

 (b) After 8 months we have  
8 528 15 7.84 su

3
A    

 
. 

 (c)   1A t   when  
5215 1

3

t

A t    
 

, that is 
1

15
2
3

ln( )5 33.3944
ln( )

t   .  Thus it will be safe 

to return after about 33.4 months. 

52. If  L t  denotes the number of human language families at time t (in years), then 

  ktL t e  for some constant k.  The condition that   60006000 1.5kL e   gives 
1 3ln

6000 2
k  .  If “now” corresponds to time t T , then we are given that 

  3300kTL T e  , so 1 ln 3300ln 3300 6000 119887.18
ln(3 2)

T
k

   .  This result suggests 

that the original human language was spoken about 120 thousand years ago. 

53. As in Problem 52, if  L t  denotes the number of Native American language families at 

time t (in years), then   ktL t e  for some constant k, and the condition that 

  60006000 1.5kL e   gives 1 3ln
6000 2

k  .  If “now” corresponds to time t T , then we 
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are given that   150kTL T e  , so 1 ln150ln150 6000 74146.48
ln(3 2)

T
k

   .  This result 

suggests that the ancestors of today’s Native Americans first arrived in the western hemi-
sphere about 74 thousand years ago. 

54. With  A y  constant, Equation (30) in the text takes the form dy k y
dt

 , which we read-

ily solve to find 2 y kt C  .  The initial condition  0 9y   yields 6C  , and then 

 1 4y   yields 2k  .  Thus the depth at time t (in hours) is    23y t t  , and hence it 
takes 3 hours for the tank to empty. 

55. With 23A    and 2( )1 12a  , and taking 232 ft/secg  , Equation (30) reduces to  
162y y   , which we solve to find 324 y t C   .  The initial condition  0 9y   
leads to 972C  , and so 0y   when 972 sect  , that is 16 min 12 sec. 

56. The radius of the cross-section of the cone at height y is proportional to y, so  A y  is 

proportional to 2y .  Therefore Equation (30) takes the form 2y y k y   , and a general 
solution is given by 5 22 5y kt C   .  The initial condition  0 16y   yields 2048C  , 

and then  1 9y   gives 5 1562k  .  Hence 0y   when 2048 1.31 hr
5 1562
Ct
k

   . 

57. The solution of y k y    is given by 2 y kt C   .  The initial condition   0y h  

(the height of the cylinder) yields 2C h .  Then substituting t T  and 0y   gives 

2k h T .  It follows that 
2

1 ty h
T

   
 

.  If r denotes the radius of the cylinder, then 

 
2 2

2 2
01 1t tV y r y r h V

T T
            

   
. 

58. Since 3 4x y , the cross-sectional area is   2 3 2A y x y   .  Hence the general equa-

tion   2A y a gyy     reduces to the differential equation yy k    with general solu-

tion 21
2

y kt C   .  The initial condition  0 12y   gives 72C  , and then  1 6y   

yields 54k  .  Upon solving for y we find that the depth at time t is   144 108y t t  .  
Hence the tank is empty after 144 108 hrt  , that is, at 1:20 p.m. 
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59. (a) Since 2x by , the cross-sectional area is   2A y x by   .  Hence equation (30) 

becomes  1/2 2y y k a b g     , with general solution 3 22
3

y kt C   .  The initial 

condition  0 4y   gives 16 3C  , and then  1 1y   yields 14 3k  .  It follows that the 

depth at time t is    2 38 7y t t  . 

 (b) The tank is empty after 8 7  hrt  , that is, at 1:08:34 p.m. 

 (c) We see above that 142
3

ak g
b

  .  Substitution of 2a r  and 1b   and 

2 232 3600 ft hrg    yields 1 7  ft  0.15 in
60 12

r    for the radius of the bottom hole. 

60. With 232 ft secg   and 21
12( )a  , Equation (30) simplifies to  

18
dyA y y
dt

  .  If z 

denotes the distance from the center of the cylinder down to the fluid surface, then 

3y z   and    1 2210 9A y z  , with dz dy
dt dt

  .  Upon substituting, then, the equa-

tion above becomes    1 2 1 2210 9 3
18

dzz z
dt

   , or  1 2180 3 z dz dt   , or 

 1 2120 3 z t C   .  Now 0z   when 0t  , so 3 2120 3 .  The tank is empty when 

3z   (that is, when 0y  ), and thus after  3 2 3 2120 6 3 362.90 sect


   .  It therefore 

takes about 6 min 3 sec for the fluid to drain completely. 

61.    28A y yy    as in Example 6 in the text, but now 
144

a   in Equation (30), so 

that the initial value problem is  218 8y y y y   ,  0 8y  .  Separating variables 

gives  3 2 1 218 8y y dy dt   , or 5 2 3 22 1618
5 3

y y t C    
 

, and the initial condition 

gives 5 2 3 22 1618 8 8
5 3

C    
 

.  We seek the value of t when 0y  , which is given by 

869 sec = 14 min 29 secC  . 

62. Here    21A yy     and the area of the bottom hole is 410a  , so Equation (30) 

leads to the initial value problem  2 41 10 2 9.8dyy y
dt

     ,  0 1y  , or 

 1/2 3/2 41.4 10 10dyy y
dt

     .  Separating variables yields 

1/2 5/2 422 1.4 10 10 .
5

y y t C      
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 The initial condition  0 1y   implies that 2 82
5 5

C    , so 0y   after 

4

8 5 3614 sec = 1 hr 14 sec
1.4 10 10

t


 


.  Thus the tank is empty at about 14 seconds 

after 2 pm. 

63. (a) As in Example 6, the initial value problem is  28 dyy y k y
dt

    ,  0 4y  , 

where  2 20.6 2 4.8k r g r  .  Separating variables and applying the initial condition just 

as in the Example 6 solution, we find that 3 2 5 216 2 448
3 5 15

y y k t    .  When we substi-

tute 2 (ft)y   and 1800 sect   (that is, 30 min) we find that 0.009469k  .  Finally, 

0y   when 448 3154 sec 53 min 34 sec
15

t
k

   .  Thus the tank is empty at 1:53:34 p.m. 

 (b) The radius of the bottom hole is 0.04442 ft 0.53 in
4.8
kr    , thus about half an 

inch. 

64. The given rate of fall of the water level is 14 in hr  ft sec
10800

dy
dt

    .  With 

  2A y x  (where  y f x ) and 2a r , Equation (30) becomes 
2

2 22 8
10800

x r gy r y    , or 
2

210800 8
xy

r



.  Hence the curve is of the form 

4y kx , and the diagram shows that 4y   when 1x  , which means that 4k  .  Final-

ly, rewriting 44y x  as 22y x  shows that 2
1 2

10800 8r



, and so the radius r of the 

bottom hole is given by 1 1 1 ft =  in  0.02888 in
4 10800 240 3 20 3

r    , that is, 

about 1 35 in . 

65. The temperature  T t  of the body satisfies the differential equation  70dT k T
dt

  .  

Separating variables gives 1
70

dT k dt
T


  , or (since   70T t   for all t) 

 ln 70T kt C    .  If we take 0t   at the (unknown) time of death, then applying the 

initial condition  0 98.6T   gives ln 28.6C  , and so   70 28.6 ktT t e  .  Now sup-
pose that 12 noon corresponds to t a .  This gives the two equations 

 
   1

70 28.6 80

1 70 28.6 75

ka

k a

T a e

T a e



 

  

   
, 
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 which simplify to 
28.6 10
28.6 5

ka

ka k

e
e e



 




. 

 These latter equations imply that 5 10 1 2ke   , so that ln 2k  .  Finally, we can sub-
stitute this value of k into the first of the previous two equations to find that 

ln 2.86 1.516 hr 1 hr 31 min
ln 2

a    , so the death occurred at 10:29 a.m. 

66. (a) Let 0t   when it began to snow, and let 0t t  at 7:00 a.m.  Also let 0x   where the 
snowplow begins at 7:00 a.m.  If the constant rate of snowfall is given by c, then the 
snow depth at time t is given by y ct .  If v dx dt  denotes the plow’s velocity (and if 
we assume that the road is of constant width), then “clearing snow at a constant rate” 
means that the product yv  is constant.  Hence the snowplow must satisfy the differential 
equation 

1dxk
dt t

 , 

 where k is a constant. 

 (b) Separating variables gives 1k dx dt
t

  , or lnkx t C  , and then solving for t 

gives kxt Ce .  The initial condition  0 0x t   gives 0C t .  We are further given that 
2x   when 0 1t t   and 4x   when 0 3t t  , which lead to the equations 

2
0 0

4
0 0

1
3

k

k

t t e
t t e
 

 
. 

 Solving each these for 0t  shows that 0 2 4
1 3

1 1k kt
e e

 
 

, and so  4 21 3 1k ke e   , or 

4 23 2 0k ke e   , or   2 21 2 0k ke e   , or 2 2ke  , since 0k  .  Hence the first of the 
two equations above gives 0 01 2t t  , so 0 1t  .  Thus it began to snow at 6 a.m. 

67. We still have 0
kxt t e , but now the given information yields the conditions 

4
0 0

7
0 0

1
2

k

k

t t e
t t e
 

 
 

 at 8 a.m. and 9 a.m., respectively.  Elimination of 0t  gives the equation 4 72 1 0k ke e   , 
which cannot be easily factored, unlike the corresponding equation in Problem 66.  Let-
ting ku e  gives 4 72 1 0u u   , and solving this equation using MATLAB or other 
technology leads to three real and four complex roots.  Of the three real roots, only 

1.086286u   satisfies 1u  , and thus represents the desired solution.  This means that 
ln1.086286 0.08276k   .  Using this value, we finally solve either of the preceding pair 

of equations for 0 2.5483 hr 2 hr 33 mint   .  Thus it began to snow at 4:27 a.m. 



Section 1.4: Separable Equations and Applications    43 

Copyright © 2018 Pearson Education, Inc. 

68. (a) Note first that if   denotes the angle between the tangent line and the horizontal, then 

2
   , so  cot cot tan

2
y x        

 
.  It follows that 

 2 2 2 2

sin 1 1sin
sin cos 1 cot 1 y x


  

  
  

. 

 Therefore the mechanical condition that sin
v
  be a (positive) constant with 2v gy  

implies that 
 2

1

2 1gy y
 is constant, so that  21 2y y a     for some positive 

constant a.  Noting that 0y   because the bead is falling (and hence moving in the direc-
tion of increasing x), we readily solve the latter equation for the desired differential equa-

tion 2dy a yy
dx y

   . 

 (b) The substitution 22 siny a t , 4 sin cosdy a t t dt  now gives 
2

2
2 2 sin cos4 sin cos

2 sin sin
a a t ta t t dt dx dx

a t t
  , 24 sindx a t dt  

 Integration now gives 

 2 14 sin 2 1 cos 2 2 sin 2 2 sin 2
2

x a t dt a t dt a t t C a t t C          
   , 

 and we recall that  22 sin 1 cos 2y a t a t   .  The requirement that 0x   when 0t   
implies that 0C  .  Finally, the substitution 2t   yields the desired parametric equa-
tions 

 sinx a    ,  1 cosy a   . 

 of the cycloid that is generated by a point on the rim of a circular wheel of radius a as it 
rolls along the x-axis.  [See Example 5 in Section 9.4 of Edwards and Penney, Calculus: 
Early Transcendentals, 7th edition (Upper Saddle River, NJ: Pearson, 2008).] 

69. Substitution of v dy dx  in the differential equation for  y y x  gives 21dva v
dx

  , 

and separation of variables then yields 
2

1 1
1

dv dx
av


  , or 1

1sinh xv C
a

   , or 

1sinhdy x C
dx a

   
 

.  The fact that  0 0y   implies that 1 0C  , so it follows that 

sinhdy x
dx a

   
 

, or   cosh xy x a C
a

   
 

.  Of course the (vertical) position of the x-axis 

can be adjusted so that 0C  , and the units in which T and   are measured may be ad-
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justed so that 1a  .  In essence, then, the shape of the hanging cable is the hyperbolic co-
sine graph coshy x  

.

SECTION 1.5 

LINEAR FIRST-ORDER EQUATIONS 

1. An integrating factor is given by  exp 1 xdx e   , and multiplying the differential 

equation by   gives 2x x xe y e y e   , or   2x x
xD e y e  .  Integrating then leads to 

2 2x x xe y e dx e C    , and thus to the general solution 2 xy Ce  .  Finally, the in-

itial condition  0 0y   implies that 2C   , so the corresponding particular solution is 

  2 2 xy x e  . 

2. An integrating factor is given by   2exp 2 xdx e    , and multiplying the differen-

tial equation by  gives 2 22 3x xe y e y    , or  2 3x
xD e y   .  Integrating then leads to 

2 3xe y x C    , and thus to the general solution 2 23 x xy xe Ce  .  Finally, the initial 
condition  0 0y   implies that .., so the corresponding particular solution is 

  23 xy x xe . 

3. An integrating factor is given by   3exp 3 xdx e   , and multiplying the differential 

equation by   gives  3 2x
xD y e x  .  Integrating then leads to 3 2xy e x C   , and 

thus to the general solution    2 3xy x x C e  . 

4. An integrating factor is given by   2
exp 2 xx dx e    , and multiplying the differen-

tial equation by   gives  2

1x
xD y e  .  Integrating then leads to 

2xy e x C   , and 

thus to the general solution     2xy x x C e  . 

5. We first rewrite the differential equation for 0x   as 2 3y y
x

   .  An integrating factor 

is given by 2ln 22exp xdx e x
x

     
  , and multiplying the equation by   gives 

2 2 3x y xy   , or  2 23xD y x x  .  Integrating then leads to 2 3y x x C   , and thus 
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to the general solution   2
Cy x x
x

  .  Finally, the initial condition  1 5y   implies that 

4C  , so the corresponding particular solution is   2
4y x x
x

  . 

6. We first rewrite the differential equation for 0x   as 5 7y y x
x

   .  An integrating fac-

tor is given by 5ln 55exp xdx e x
x

     
  , and multiplying the equation by   gives 

5 4 65 7x y x y x   , or  5 67xD y x x  .  Integrating then leads to 5 7y x x C   , and 

thus to the general solution   2
5

Cy x x
x

  .  Finally, the initial condition  2 5y   im-

plies that 32C  , so the corresponding particular solution is   2
5

32y x x
x

  . 

7. We first rewrite the differential equation for 0x   as 1 5
2

y y
x x

   .  An integrating 

factor is given by  ln 21exp
2

xdx e x
x

     
  , and multiplying the equation by   

gives 1 5
2

x y y
x

   , or   5xD y x  .  Integrating then leads to 5y x x C   , 

and thus to the general solution   5 Cy x x
x

  . 

8. We first rewrite the differential equation for 0x   as 1 4
3

y y
x

   .  An integrating fac-

tor is given by  ln 3 31exp
3

xdx e x
x

     
  , and multiplying the equation by   

gives 2 33 31 4
3

x y x y x   , or  3 34xD y x x  .  Integrating then leads to 

4 33 3y x x C   , and thus to the general solution   1 33y x x Cx  . 

9. We first rewrite the differential equation for 0x   as 1 1y y
x

   .  An integrating factor 

is given by 1 1exp dx
x x

     
  , and multiplying the equation by   gives 

2
1 1 1y y
x x x

   , or 1 1
xD y

x x
   
 

.  Integrating then leads to 1 lny x C
x
   , and thus to 
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the general solution   lny x x x Cx  .  Finally, the initial condition  1 7y   implies 

that 7C  , so the corresponding particular solution is   ln 7y x x x x  . 

10. We first rewrite the differential equation for 0x   as 23 9
2 2

y y x
x

   .  An integrating 

factor is given by  3 ln 2 3 23exp
2

xdx e x
x

      
  , and multiplying by   gives 

3 2 5 2 1 23 9
2 2

x y x y x    , or  3 2 1 29
2xD y x x  .  Integrating then leads to 

3 2 3 23y x x C   , and thus to the general solution   3 3 23y x x Cx  . 

11. We first collect terms and rewrite the differential equation for 0x   as 1 3 0y y
x

     
 

.  An integrating factor is given by 

ln 3 31exp 3 x x xdx e xe
x

            , 

 and multiplying by   gives  3 3 33 0x x xxe y e xe y      , or  3 0x
xD y xe  .  Inte-

grating then leads to 3xy xe C  , and thus to the genral solution   1 3xy x Cx e .  Final-

ly, the initial condition  1 0y   implies that 0C  , so the corresponding particular solu-

tion is   0y x  , that is, the solution is the zero function. 

12. We first rewrite the differential equation for 0x   as 43 2y y x
x

   .  An integrating fac-

tor is given by 3ln 33exp xdx e x
x

     
  , and multiplying by   gives 

3 2 73 2x y x y x   , or  3 72xD y x x  .  Integrating then leads to 3 81
4

y x x C   , and 

thus to the general solution   5 31
4

y x x Cx  .  Finally, the initial condition  2 1y   

implies that 56C   , so the corresponding particular solution is   5 31 56
4

y x x x  . 

13. An integrating factor is given by  exp 1 xdx e   , and multiplying by   gives 

2x x xe y e y e   , or   2x x
xD y e e  .  Integrating then leads to 21

2
x xy e e C   , and 

thus to the general solution   1
2

x xy x e Ce  .  Finally, the initial condition  0 1y   
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implies that 1
2

C  , so the corresponding particular solution is   1 1
2 2

x xy x e e  , that 

is, coshy x . 

14. We first rewrite the differential equation for 0x   as 23y y x
x

   .  An integrating factor 

is given by 33exp dx x
x

     
  , and multiplying by   gives 3 1

4
3x y y x
x

    , or 

 3 1
xD y x x   .  Integrating then leads to 3 lny x x C   , and thus to the general so-

lution   3 3lny x x x Cx  .  Finally, the initial condition  1 10y   implies that 10C  , 

so the corresponding particular solution is   3 3ln 10y x x x x  . 

15. An integrating factor is given by   2
exp 2 xx dx e   , and multiplying by   gives 

2 2 2

2x x xe y xe y xe   , or  2 2x x
xD y e xe  .  Integrating then leads to 

2 21
2

x xy e e C  

, and thus to the general solution   21
2

xy x Ce  .  Finally, the initial condition 

 0 2y    implies that 5
2

C   , so the corresponding particular solution is 

  21 5
2 2

xy x e  . 

16. We first rewrite the differential equation as  cos cosy x y x   .  An integrating factor 

is given by   sinexp cos xx dx e   , and multiplying by   gives 

 sin sin sincos cosx x xe y e x y e x   , or  sin sin cosx x
xD y e e x  .  Integrating then leads to 

sin sinx xy e e C   , and thus to the general solution   sin1 xy x Ce  .  Finally, the initial 

condition   2y    implies that 1C  , so the corresponding particular solution is 

  sin1 xy x e  . 

17. We first rewrite the differential equation for 1x    as 1 cos
1 1

xy y
x x

  
 

.  An integrat-

ing factor is given by 1exp 1
1

dx x
x

       , and multiplying by   gives 

 1 cosx y y x    (which happens to be the original differential equation), or 

 1 cosxD y x x     .  Integrating then leads to  1 siny x x C    , and thus to the 
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general solution   sin
1

x Cy x
x



.  Finally, the initial condition  0 1y   implies that 

1C  , so the corresponding particular solution is   1 sin
1

xy x
x




. 

18. We first rewrite the differential equation for 0x   as 22 cosy y x x
x

   .  An integrating 

factor is given by 22exp dx x
x

     
  , and multiplying by   gives 

2
3

2 cosx y y x
x

    , or  2 cosxD y x x  .  Integrating then leads to 2 siny x x C  

, and thus to the general solution    2 siny x x x C  . 

19. For 0x   an integrating factor is given by   ln(sin )exp cot sinxx dx e x    , and mul-

tiplying by   gives    sin cos sin cosx y x y x x   , or  sin sin cosxD y x x x  .  In-

tegrating then leads to 21sin sin
2

y x x C   , and thus to the general solution 

  1 sin csc
2

y x x C x  . 

20. We first rewrite the differential equation as  1 1y x y x     .  An integrating factor is 

given by  
2

2exp 1
xx

x dx e
 

    , and multiplying by   gives 

   
2 2 2

2 2 21 1
x x xx x x

e y x e y x e
     

     , or  
2 2

2 21
x xx x

xD y e x e
    

    
 

.  Integrating 

then leads to 
2 2

2 2
x xx x

y e e C
   

    , and thus to the general solution 

 
2

21
xx

y x Ce
 

   .  Finally, the initial condition  0 0y   implies that 1C  , so the 

corresponding particular solution is  
2

21
xx

y x e
 

   . 

21. We first rewrite the differential equation for 0x   as 33 cosy y x x
x

   .  An integrating 

factor is given by 3ln 33exp xdx e x
x

       
  , and multiplying by   gives 

3 43 cosx y x y x    , or  3 cosxD y x x  .  Integrating then leads to 
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3 siny x x C   , and thus to the general solution   3 3siny x x x Cx  .  Finally, the 

initial condition  2 0y   , so the corresponding particular solution is   3 siny x x x . 

22. We first rewrite the differential equation as 
222 3 xy xy x e   .  An integrating factor is 

given by   2
exp 2 xx dx e    , and multiplying by   gives 

2 2 22 3x xe y xe y x    , 

or  2 23x
xD y e x  .  Integrating then leads to 

2 3xy e x C   , and thus to the general 

solution     23 xy x x C e  . Finally, the initial condition  0 5y   implies that 5C  , 

so the corresponding particular solution is     23 5 xy x x e  . 

23. We first rewrite the differential equation for 0x   as 332 4y y x
x

     
 

.  An integrat-

ing factor is given by   3 23exp 2 exp 2 3ln xdx x x x e
x

       
  , and multiplying 

by   gives  3 2 3 4 2 22 3 4x x xx e y x x e y e      , or  3 2 24x x
xD y x e e  .  Integrating 

then leads to 3 2 22x xy x e e C   , and thus to the general solution   3 3 22 xy x x Cx e  . 

24. We first rewrite the differential equation as 2 2
3

4 4
x xy y

x x
  

 
.  An integrating factor 

is given by    3 22 2
2
3 3exp exp ln 4 4

4 2
x dx x x

x
               , and multiplying by 

  gives      3 2 1 2 1 22 2 24 3 4 4x y x x y x x      , or 

   3/2 1/22 24 4xD y x x x      
.  Integrating then leads to 

   3 2 3 22 214 4
3

y x x C     , and thus to the general solution 

    3 221 4
3

y x C x


   . Finally, the initial condition  0 1y   implies that 16
3

C  , so 

the corresponding particular solution is     3 221 1 16 4
3

y x x
     

. 

25. We first rewrite the differential equation as 
233

2
2 2
3 6

1 1
xx xy y e

x x


  
 

.  An integrating 

factor is given by 
3

2
3exp

1
x dx

x
  
   

 .  Long division of polynomials shows that 

3

2 2
3 33

1 1
x xx

x x
 

 
, and so 
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   
23

3 22 2 2 2
2
3 3 3exp 3 exp ln 1 1

1 2 2
xxx dx x x x e

x


                . 

 Multiplying by   gives 

     
2 23 33 2 5 2 5 22 3 2 22 21 3 1 6 1

x x
x e y x x e y x x

  
      , 

 or (as can be verified using the product rule twice, together with some algebra) 

   
23

3/2 5/22 221 6 1
x

xD y x e x x
  

    
 

.  Integrating then leads to 

     
23

3/2 5/2 3/22 2 221 6 1 2 1
x

y x e x x dx x C
  

        , 

 and thus to the general solution  
233/22 22 1

x
y C x e

      
.  Finally, the initial condi-

tion  0 1y   implies that 3C  , so the corresponding particular solution is 

 
233/22 22 3 1

x
y x e

      
. 

The strategy in each of Problems 26-28 is to use the inverse function theorem to conclude that at 

points  ,x y  where 0dy
dx

 , x is locally a function of y with 1dx dy
dy dx

  .  Thus the given differ-

ential equation is equivalent to one in which x is the dependent variable and y as the independent 
variable, and this latter equation may be easier to solve than the one originally given.  It may not 
be feasible, however, to solve the resulting solution for the original dependent variable y. 

26. At points  ,x y  with 21 4 0xy   and 0y  , rewriting the differential equation as 
3

21 4
dy y
dx xy




 shows that 
2

3
1 4dx xy

dy y
 , or (putting x  for dx

dy
) 3

4 1x x
y y

   , a linear 

equation for the dependent variable x as a function of the independent variable y.  For 

0y  , an integrating factor is given by 44exp dy y
y

    
 
 , and multiplying by   

gives 4 34y x y x y   , or  4
yD x y y  .  Integrating then leads to 4 21

2
x y y C   , 

and thus to the general (implicit) solution   2 4
1

2
Cx y

y y
  . 

27. At points  ,x y  with 0yx ye  , rewriting the differential equation as 1
y

dy
dx x ye




 

shows that ydx x ye
dy

  , or (putting x  for dx
dy

) yx x ye   , a linear equation for the 

dependent variable x as a function of the independent variable y.  An integrating factor is 
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given by  exp 1 ydy e    , and multiplying by   gives y ye x e x y    , or 

 y
yD x e y  .  Integrating then leads to 21

2
yx e y C   , and thus to the general (im-

plicit) solution   21
2

yx y y C e   
 

. 

28. At points  ,x y  with 1 2 0xy  , rewriting the differential equation as 
21

1 2
dy y
dx xy




 

shows that 2
1 2
1

dx xy
dy y




, or (putting x  for dx
dy

) 2 2
2 1

1 1
yx x
y y

  
 

, a linear equation 

for the dependent variable x as a function of the independent variable y.  An integrating 

factor is given by  2
2 2

2 1exp exp ln 1
1 1

y dy y
y y

              
 , and multiplying 

by   gives 
   2 22 2 2

1 2 1
1 1 1

yx x
y y y

  
  

, or 
 22 2

1
1 1

y
xD
y y

     
.  Integrating, 

by means of either the initial substitution tany   or the use of an integral table, then 
leads to 

 
1

22 22

1 1 tan
1 2 11

x ydy y C
y yy

       
 , 

 and thus to the (implicit) general solution     2 11 1 tan
2

x y y y y C      . 

29. We first rewrite the differential equation as 2 1y xy   .  An integrating factor is given 

by   2

exp 2 xx dx e    , and multiplying by   gives 
2 2 2

2x x xe y xe y e     , or 

 2 2x x
xD y e e   .  Integrating then leads to 

2 2x xy e e dx    .  Any antiderivative of 
2xe  differs by a constant (call it C) from the definite integral 

2

0

x te dt , and so we can 

write 
2 2

0

xx ty e e dt C    .  The definition of  erf x  then gives 

 2
erf

2
xy e x C   , and thus the general solution    2

erf
2

xy x e x C 
  

 
. 

30. We first rewrite the differential equation for 0x   as 1 cos
2

y y x
x

   .  An integrating 

factor is given by 1 21exp
2

dx x
x

     
  , and multiplying by   gives 
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1 2 3 2 1 21 cos
2

x y x y x x     , or  1 2 1 2 cosxD x y x x   .  Integrating then leads to 

1 2 1 2 cosx y x x dx    .  Any antiderivative of 1 2 cosx x  differs by a constant (call it C) 

from the definite integral 1 2

1
cos

x
t t dt , and so we can write 1 2 1 2

1
cos

x
x y t t dt C   

, which gives the general solution   1 2 1 2

1
cos

x
y x x t t dt C     .  Finally, the initial 

condition  1 0y   implies that 0C  , and so the desired particular solution is given by 

  1 2 1 2

1
cos

x
y x x t t dt  . 

31. (a) The fundamental theorem of calculus implies, for any value of C, that 

         P x dx
c cy x Ce P x P x y x

       , 

 and thus that       0c cy x P x y x   .  Therefore cy  is a general solution of 

  0dy P x y
dx

  . 

 (b) The product rule and the fundamental theorem of calculus imply that 

               

         

      ,

P x dx P x dx P x dx P x dx
p

P x dx P x dx

p

y x e Q x e e P x Q x e dx

Q x P x e Q x e dx

Q x P x y x

 



               
     
 

 



  

 and thus that        p py x P x y x Q x   .  Therefore py  is a particular solution of 

   dy P x y Q x
dx

  . 

 (c) The stated assumptions imply that 

             
           
 

 
0

,

c p c p

c c p p

y x P x y y x y x P x y x y x

y x P x y x y x P x y x

Q x

Q x

         
         

 



 

 proving that  y x  is a general solution of    dy P x y Q x
dx

  . 

32. (a) Substituting  py x  into the given differential equation gives 

   cos sin sin cos 2sinA x B x A x B x x    , 
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 that is 
   sin cos 2sinA B x A B x x    , 

 for all x.  It follows that 2A B   and 0A B  , and solving this system gives 1A   
and 1B   .  Thus   sin cospy x x x  . 

 (b) The result of Problem 31(a), applied with   1P x  , implies that 

  1dx x
cy x Ce Ce

    is a general solution of 0dy y
dx

  .  Part (b) of this problem im-

plies that   sin cospy x x x   is a particular solution of 2sindy y x
dx

  .  It follows 

from Problem 31(c), then, that a general solution of 2sindy y x
dx

   is given by 

      sin cosx
c py x y x y x Ce x x     . 

 (c) The initial condition  0 1y   implies that 1 1C  , that is, 2C  ; thus the desired 

particular solution is   2 sin cosxy x e x x   . 

33. Let  x t  denote the amount of salt (in kg) in the tank after t seconds.  We want to know 

when   10x t  .  In the notation of Equation (18) of the text, the differential equation for 

 x t  is 

    5L s5L s 0 kg L kg
1000 L

o
i i

dx rrc x x
dt V

     , 

 or 
200

dx x
dt

  .  Separating variables gives the general solution   200tx t Ce , and the 

initial condition  0 100x   implies that 100C  , and so   200100 tx t e .  Setting 

  10x t   gives 20010 100 te , or 200ln10 461 sect   , that is, about 7 min 41 sec. 

34. Let  x t  denote the amount of pollutants in the reservoir after t days, measured in mil-
lions of cubic feet (mft3).  The volume of the reservoir is 8000 mft3, and the initial 
amount  0x  of pollutants is     30.25% 8000 20mft .  We want to know when 

      30.10% 8000 8mftx t   .  In the notation of Equation (18) of the text, the differen-

tial equation for  x t  is 

  
3

3 3
3

500mft day 1500mft day 0.05% mft
8000mft 4 16

o
i i

dx r xrc x x
dt V

       , 
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 or 1 1
16 4

dx x
dt

  .  An integrating factor is given by 16te  , and multiplying the differ-

ential equation by   gives 16 16 161 1
16 4

t t tdxe e x e
dt
   , or  16 161

4
t t

tD e x e  .  Integrat-

ing then leads to 16 164t te x e C   , and thus to the general solution 164 tx Ce  .  The 
initial condition  0 20x   implies that 16C  , and so   164 16 tx t e  .  Finally, we 
find that 8x   when 16ln4 22.2t    days. 

35. The only difference from the Example 4 solution in the textbook is that 31640kmV   and 
3410km yrr   for Lake Ontario, so the time required is 

ln 4 4ln 4 5.5452 years.Vt
r

    

36. (a) Let  x t  denote the amount of salt (in kg) in the tank after t minutes.  Because the 
volume of liquid in the tank is decreasing by 1 gallon each minute, the volume after t min 
is 60 t  gallons.  Thus in the notation of Equation (18) of the text, the differential equa-
tion for  x t  is 

     
3gal min2gal min 1 lb gal lb
60 gal

o
i i

dx rrc x x
dt V t

   


, 

 or 3 2
60

dx x
dt t

 


.  An integrating factor is given by   33exp 60
60

dt t
t

       , 

and multiplying the differential equation by   gives 

     3 4 360 3 60 2 60dxt t x t
dt

       , 

 or    3 360 2 60tD t x t       .  Integrating then leads to 

     3 3 260 2 60 60t x t dt t C         , 

 and thus to the general solution      360 60x t t C t    .  The initial condition 

 0 0x   implies that 1
3600

C  , so the desired particular solution is 

     3160 60
3600

x t t t    . 

 (b) By part (a),    231 60
3600

x t t     , which is zero when 60 20 3t   .  We ig-

nore 60 20 3t    because the tank is empty after 60 min.  The facts that 

   6 60 0
3600

x t t     for 0 60t   and that 60 20 3t    is the lone critical point 
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of  x t  over this interval imply that  x t  reaches its absolute maximum at 

60 20 3 25.36 min 25min 22st     .  It follows that the maximum amount of salt ev-
er in the tank is 

   31 40 360 20 3 20 3 20 3 23.09 lb
3600 3

x      . 

37. Let  x t  denote the amount of salt (in lb) after t seconds.  Because the volume of liquid 
in the tank is increasing by 2 gallon each minute, the volume after t sec is 100 2t  gal-
lons.  Thus in the notation of Equation (18) of the text, the differential equation for  x t  
is 

     
3gal s5gal s 1 lb gal lb

100 2 gal
o

i i
dx rrc x x
dt V t

    


, 

 or 3 5
100 2

dx x
dt t

 


.  An integrating factor is given by 

 3 23exp 100 2
100 2

dt t
t

       , and multiplying the differential equation by   

gives 

     3 2 1 2 3 2100 2 3 100 2 5 100 2dxt t x t
dt

      , 

 or    3 2 3 2100 2 5 100 2tD t x t      .  Integrating then leads to 

     3 2 3 2 5 2100 2 5 100 2 100 2t x t dt t C       , 

 and thus to the general solution     3 2100 2 100 2x t t C t     .  The initial condition 

 0 50x   implies that 3 250 100 100C    , or 50000C   , and so the desired particu-

lar solution is  
 3 2

50000100 2
100 2

x t t
t

  


.  Finally, because the tank starts out with 

300 gallons of excess capacity and the volume of its contents increases at 2 gal s , the 

tank is full when 300gal 150s
2 gal s

t   .  At this time the tank contains 

 
 3 2
50000150 400 393.75lb
400

x     of salt. 

38. (a) In the notation of Equation (16) of the text, the differential equation for  x t  is 

    5gal min5gal min 0 lb gal lb
100gali i o o

dx rc r c x
dt

     , 
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 or 1
20

dx x
dt

  .  Separating variables leads to the general solution   20tx t Ce , and the 

initial condition  0 50x   implies that 50C  .  Thus   2050 tx t e . 

 (b) In the same way, the differential equation for  y t  is 

    5 55gal min lb gal 5gal min lb gal
100 200 100 200

dy x y x y
dt

         
   

, 

 in light of the (constant) volumes of liquid in the two tanks.  Substituting the result of part 

(a) gives 201 5
40 2

tdy y e
dt

  .  An integrating factor is given by 401exp
40

tdt e    
  , 

and multiplying the differential equation by   gives 40 40 401 5
40 2

t t tdye e y e
dt

   , or 

40 405
2

t t
tD e y e    .  Integrating then leads to 40 40 405 100

2
t t te y e dt e C      , 

and thus to the general solution   20 40100 t ty t e Ce    .  The initial condition 

 0 50y   implies that 150C  , so that   20 40100 150t ty t e e    . 

 (c) By part (b),   20 40 20 4015 35 5 1
4 4

t t t ty t e e e e         
 

, from which we see that 

  0y t   when 440ln
3

t  .  Furthermore,   0y t   for 40 40ln
3

t   and   0y t   for 

440ln
3

t  , which implies that  y t  reaches its absolute maximum at 440ln 11.51
3

t    

min.  The maximum amount of salt in tank 2 is therefore 
24 3 3 340ln 100 150 75 56.25lb

3 4 4 4
y             
   

. 

39. (a) In the notation of Equation (18) of the text, the differential equation for  x t  is 

     10gal min 0 10gal min
100

o
i i

dx r xrc x
dt V

      
 

, 

 or 1 0
10

dx x
dt

  .  Separating variables leads to the general solution   10tx t Ce , and 

the initial condition  0 100x   implies that 100C  .  Thus   10100 tx t e .  In the 

same way, the differential equation for  y t  is 

   10gal min 10gal min
100 100

dy x y
dt

       
   

, 
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 because the volume of liquid in each tank remains constant at 2 gal.  Substituting the re-

sult of part (a) gives 101 10
10

tdy y e
dt

  .  An integrating factor is given by 

101exp
10

tdt e    
  , and multiplying the differential equation by   gives 

10 101 10
10

t tdye e y
dt
   , or  10 10t

tD e y  .  Integrating then leads to 10 10te y t C   , 

and thus to the general solution     1010 ty t t C e  .  The initial condition  0 0y   

implies that 0C  , so that   1010 ty t te . 

 (b) By Part (a),    10 10 1010 10
10

t t tty t e e e t         
 

, which is zero for 10t  .  

Furthermore,   0y t   for 0 10t  , and   0y t   for 10t  , which implies that  y t  
reaches its absolute maximum at 10t   min.  The maximum amount of ethanol in tank 2 
is therefore   110 100 36.79y e   gal. 

40. (a) In the notation of Equation (16) of the text, the differential equation for  0x t  is 

     0 01gal min 0 1gal min
2i i o o

dx xrc r c
dt

      
 

, 

 or 0 0

2
dx x
dt

  .  Separating variables leads to the general solution   20
0

tx t Ce , and the 

initial condition  0 1x   implies that 1C  .  Thus   20
0

tx t e . 

 (b) First, when 0n  , the proposed formula predicts that   2
0

tx t e , which was veri-
fied in part (a).  Next, for a fixed positive value of n we assume the inductive hypothesis 

 
2

!2

n t

n n
t ex t
n



  and seek to show that    
1 2

1 1!21

n t

n n
t ex t

n

 

 


; this will prove by mathemat-

ical induction that the proposed formula holds for all 0n  . 
 The differential equation for  1nx t  is  

   1 1 11gal min 1gal min
2 2 2 2

n n n n ndx x x x x
dt

           
   

, 

 because the volume of liquid in each tank remains constant at 2 gal.  Our inductive hy-
pothesis then gives 

2 2
1 1

11
1 1

!2 !22 2 2

n t n t
n n

nn n
t e t edx x x
n ndt

 
 

    , 

 or 
2

1
1 1

1
!22

n t
n

n n
t edx x
ndt




   .  An integrating factor is given by 21exp
2

tdt e    
  , and 

multiplying the differential equation by   gives 
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2
2 2 21

1 1 1
1

!2 !22

n t n
t t tn

n n n
t e tdxe e x e
n ndt




      , 

 or  2
1 1!2

n
t

t n n
tD e x

n   .  Integrating then leads to 

   
1 1

2
1 1 1!2 21 1 !

n n
t

n n n
t te x C C

nn n

 

      
  

, 

 and thus to the general solution    
1

2
1 121 !

n
t

n n
tx t C e

n



 

 
   

.  The initial condition 

 1 0 0nx    implies that 0C  , so that 

     
1 1 2

2
1 1 12 21 ! 1 !

n n t
t

n n n
t t ex t e

n n

 

   
 

, 

 as desired. 
 (c) Part (b) implies that 

   
21

2 21
1

1 1 2
!2 !22

tn
t tn n

n n n
etx e et t nt n t

n n


 


       
 

, 

 which is zero for 2t n .  Further,   0nx t   for 0 2t n   and   0nx t   for 2t n , 

which means that  nx t  achieves its absolute maximum when 2t n .  It follows that 

   2
2

!2 !

n n n n

nn n

en enxM n
n n

 

  . 

 (d) Substituting Sterling’s approximation into the result of part (c) gives 
1

2 2

n n

n n n

enM
n e n n 




  . 

41. (a) Between time t and time t t  , the amount  A t  (in thousands of dollars) increases 

by a deposit of  0.12S t t  (12% per year of annual salary) as well as interest earnings 

of  0.06A t t  (6% per year of current balance).  It follows that 

   0.12 0.06A S t t A t t     , 

 leading to the linear differential equation 200.12 0.06 3.6 0.06tdA S A e A
dt

    , or 

200.06 3.6 tdA A e
dt

  . 

 (b) An integrating factor is given by   0.06exp 0.06 tdt e    , and multiplying the 

differential equation by   gives 0.06 0.06 20 0.06 0.010.06 3.6 3.6t t t t tdAe e A e e e
dt

       , or 
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 0.06 0.013.6t t
tD e A e   .  Integrating then leads to 0.06 0.01360t te A e C     , and thus to 

the general solution   0.05 0.06360 t tA t e Ce   .  The initial condition  0 0A   implies 

that 360C  , so that    0.06 0.05360 t tA t e e  .  At age 70 she will have 

 40 1308.283A   thousand dollars, that is, $1,308,283. 

42. Since both m and v vary with time, Newton’s second law and the product rule give 
dv dmm v mg
dt dt

  .  Now since the hailstone is of uniform density 1, its mass  m t  

equals its volume  
3

33 34 4 4
3 3 3

kr kt t    , which means that 3 24dm k t
dt

 .  Thus the 

velocity  v t  of the hailstone satisfies the linear differential equation 
3 3

3 3 2 34 44
3 3
k dv kt k t v t g

dt
   , or 3dv v g

dt t
  .  An integrating factor is given by 

33exp dt t
t

    
  , and multiplying the differential equation by   gives 

3 2 33dvt t v gt
dt
   , or  3 3

tD t v gt  .  Integrating then leads to 3 4

4
gt v t C   , and thus 

to the general solution   3

4
gv t t Ct  .  The initial condition  0 0v   implies that 

0C  , so that  
4
gv t t , and therefore 

4
dv g
dt

 . 

43. (a) First we rewrite the differential equation as y xy  .  An integrating factor is given 
by  exp 1 xdx e   , and multiplying the differential equation by   gives 

x x xy xe e y e   , or  x x
x xD e y e .  Integrating (by parts) then leads to 

x x x xxe y e dx xe e C    , and thus to the general solution   1 xy x x Ce   .  

Then the fact that lim 0x

x
e


  implies that every solution curve approaches the straight 

line 1y x   as x  . 

 (b) The initial condition   05y y  imposed upon the general solution in part (a) implies 

that 5
0 5 1y Ce    , and thus that  5

0 6C e y  .  Hence the solution of the initial 

value problem y x y   ,   05y y  is     5
01 6 xy x x y e     .  Substituting 5x 

, we therefore solve the equation 10
0 14 ( 6)y e y    with 

1 3.998,3.999,4,4.001,4.002y   
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 for the desired initial values 

0 50.0529, 28.0265, 6.0000,16.0265,38.0529y     , 
 respectively. 

44. (a) First we rewrite the differential equation as y y x   .  An integrating factor is given 
by  exp 1 xdx e    , and multiplying the differential equation by   gives 

x x xy xe e y e     , or  x x
x xD e y e  .  Integrating (by parts) then leads to 

x x x xxe y e dx xe e C        , and thus to the general solution   1 xy x x Ce   

.  Then the fact that lim 0x

x
e


  implies that every solution curve approaches the straight 

line 1y x    as x   . 

 (b) The initial condition   05y y   imposed upon the general solution in part (a) implies 

that 5
0 5 1y Ce   , and thus that  5

0 4C e y  .  Hence the solution of the initial val-

ue problem y x y   ,   05y y  is     5
01 4 xy x x y e      .  Substituting 5x  , 

we therefore solve the equation   10
0 16 4y e y     with 

1 10, 5,0,5,10y     
 for the desired initial values 

0 3.99982,4.00005,4.00027,4.00050,4.00073y  , 
 respectively. 

45. The volume of the reservoir (in millions of cubic meters, denoted m-m3) is 2.  In the nota-
tion of Equation (18) of the text, the differential equation for  x t  is 

     3 3 3 30.2 m-m month 10 L m 0.2 m-m month L m
2

o
i i

dx r xrc x
dt V

      
 

, 

 or 1 2
10

dx x
dt

  .  An integrating factor is given by 10te  , and multiplying the differ-

ential equation by   gives 10 10 101 2
10

t t tdxe e x e
dt
   , or  10 102t t

tD e x e  .  Integrating 

then leads to 10 1020t te x e C   , and thus to the general solution   1020 tx t Ce  .  

The initial condition  0 0x   implies that 20C   , and so    1020 1 tx t e  , which 

shows that indeed  lim 20
t

x t


  (million liters).  This was to be expected because the 
reservoir’s pollutant concentration should ultimately match that of the incoming water, 
namely 310 L m .  Finally, since the volume of reservoir remains constant at 2 m-m3, a 
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pollutant concentration of 35L m  is reached when   5
2

x t
 , that is, when 

 1010 20 1 te  , or 10 ln 2 6.93monthst   . 

46. The volume of the reservoir (in millions of cubic meters, denoted m-m3) is 2.  In the nota-
tion of Equation (18) of the text, the differential equation for  x t  is 

     3 3 3 30.2 m-m month 10 1 cos L m 0.2 m-m month L m ,
2

o
i i

dx rrc x
dt V

xt

 

         

 

 or  1 2 1 cos
10

dx x t
dt

   .  An integrating factor is given by 10te  , and multiplying 

the differential equation by   gives  10 10 101 2 1 cos
10

t t tdxe e x e t
dt
    , or 

   10 102 1 cost t
tD e x e t   .  Integrating (by parts twice, or using an integral table) then 

leads to 

 
10

10 10 10 /10
2 21

10

2 12 2 cos 20 cos sin
101

t
t t t t ee x e e t dt e t t C        

  ,  

 and thus to the general solution 

  10200 120 cos sin
101 10

tx t t t Ce     
 

. 

 The initial condition  0 0x   implies that 20 10220 20
101 101

C       , and so 

 

 

10

10

200 1 10220 cos sin 20
101 10 101

20 101 102 cos 10sin .
101

t

t

x t t t e

e t t





      
 

   
 

 This shows that as t  ,  x t  is more and more like 200 120 cos sin
101 10

t t   
 

, and 

thus oscillates around 20 (million liters).  This was to be expected because the reservoir’s 
pollutant concentration should ultimately match that of the incoming water, which oscil-
lates around 310 L m .  Finally, since the volume of reservoir remains constant at 2 m-m3, 

a pollutant concentration of 35L m  is reached when   5
2

x t
 , that is, when 

 102010 101 102 cos 10sin
101

te t t    . 
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 To solve this equation for t requires technology.  For instance, the Mathematica com-
mands 
x = (20/101)(101 - 102 Exp[-t/10] + Cos[t] + 10Sin[t]); 
FindRoot[ x == 10, {t, 7}] 

 yield 6.47t   months. 
 
 
SECTION 1.6 

SUBSTITUTION METHODS AND EXACT EQUATIONS 

It is traditional for every elementary differential equations text to include the particular types of 
equation that are found in this section.  However, no one of them is vitally important solely in its 
own right.  Their main purpose (at this point in the course) is to familiarize students with the 
technique of transforming a differential equation by substitution.  The subsection on airplane 
flight trajectories (together with Problems 56–59) is included as an application, but is optional 
material and may be omitted if the instructor desires. 

The differential equations in Problems 1-15 are homogeneous, and so we solve by means of the 
substitution v y x  indicated in Equation (8) of the text.  In some cases we present solutions by 
other means, as well. 

1. For 0x   and 0x y   we rewrite the differential equation as 
1

1

y
dy x y x

ydx x y
x

 
 

.  

Substituting yv
x

  then gives 1
1

dv vv x
dx v

 


, or 
21 1 2

1 1
dv v v vx v
dx v v

    
 

.  Sepa-

rating variables leads to 2
1 1

2 1
v dv dx

v v x
  

   , or 21 ln 2 1 ln
2

v v x C     , or 

2 22 1v v Cx   , where C is an arbitrary positive constant, or finally 2 22 1v v Cx  

, where C is an arbitrary nonzero constant.  Back-substituting y
x

 for v then gives the so-

lution 
2

22 1y y Cx
x x

     
 

, or 2 22y xy x C   . 

2. For , 0x y   we rewrite the differential equation as 1
2

dy x y
dx y x

   .  Substituting yv
x

  

then gives 1
2

dvv x v
dx v

   , or 1
2

dvx
dx v

 .  Separating variables leads to  
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12v dv dx
x

  , or 2 lnv x C  , where C is an arbitrary constant.  Back-substituting 

y
x

 for v then gives the solution  2 2 lny x x C  . 

 Alternatively, the substitution 2v y , which implies that 2v y y   , gives 2 2xv x v   , 

or 2v v x
x

   , a linear equation in v as a function of x.  An integrating factor is given by  

2
2 1exp dx
x x

     
  , and multiplying by   gives 2 3

1 2 1v v
x x x

   , or 

2
1 1

xD v
x x

   
 

.  Integrating then gives 2
1 lnv x C
x
   , or  2 lnv x x C  , or finally 

 2 2 lny x x C  , as determined above. 

3. For ,x y  with 0xy   we rewrite the differential equation as 2dy y y
dx x x

  .  Substitut-

ing yv
x

  then gives 2dvv x v v
dx

   , or 2dvx v
dx

 .  Separating variables leads to 

1 2dv dx
xv

  , or 2 2lnv x C  , or  2
lnv x C  .  Back-substituting y

x
 for v 

then gives the solution  2lny x x C  . 

4. For 0x   and 0x y   we rewrite the differential equation as 
1

1

y
dy x y x

ydx x y
x

 
 

.  sub-

stituting yv
x

  then gives 1
1

dv vv x
dx v

 


, or 
21

1
dv vx
dx v




.  Separating variables leads 

to 2
1 1
1

v dv dx
v x
 
  , or  1 21tan ln 1 ln

2
v v x C     .  Back-substituting y

x
 for v 

then gives 
2

1 1tan ln 1 ln
2

y y x C
x x

        
   

. 
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5. For 0x   and 0x y   we rewrite the differential equation as 
1

1

y
dy y x y y x

ydx x x y x
x

   
 

.  Substituting yv
x

  then gives 1
1

dv vv x v
dx v

  


, or 
21 2

1 1
dv v vx v v
dx v v

    
 

.  Sepa-

rating variables leads to 2
1 12v dv dx

v x
    , or 1 ln 2lnv x C

v
     .  Back-

substituting y
x

 for v then gives ln 2 lnx y x C
y x

     , or ln 2 lny xx C
x y
   , or 

ln xxy C
y

  . 

6. For 2 0x y   and 0x   we rewrite the differential equation as 
2 1 2

y
dy y x

ydx x y
x

 
 

.  

Substituting yv
x

  then gives 
1 2

dv vv x
dx v

 


, or 
22

1 2 1 2
dv v vx v
dx v v

  
 

.  Separat-

ing variables leads to 2
1 2 2v dv dx

v x
    , or 1 2ln 2lnv v x C     .  Back-

substituting y
x

 for v then gives 2 ln 2 lnx y x C
y x

     , or 2 lnx y y Cy   . 

7. For , 0x y   we rewrite the differential equation as 
2

dy x y
dx y x

   
 

.  Substituting yv
x

  

then gives 
21dvv x v

dx v
    
 

, or 
21dvx

dx v
   
 

.  Separating variables leads to 

2 1v dv dx
x

  , or 3 3lnv x C  .  Back-substituting y
x

 for v then gives 
3

3lny x C
x

    
 

, or  3 3 3lny x x C  . 

 Alternatively, the substitution 3v y , which implies that 23v y y  , gives 31
3

xv x v   , 

or 23 3v v x
x

   , a linear equation in v as a function of x.  An integrating factor is given 

by 33exp dx x
x

     
  , and multiplying the differential equation by   gives 
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3 4 13 3x v x v x     , or  3 13xD x v x   .  Integrating then gives 3 3lnx v x C    , 

and finally back-substituting 3y  for v yields  3 3 3lny x x C  , as determined above. 

8. For 0x   we rewrite the differential equation as y xdy y e
dx x

  .  Substituting yv
x

  then 

gives vdvv x v e
dx

   , or vdvx e
dx

 .  Separating variables leads to 1ve dv dx
x

   , or 

lnve x C   , that is,  ln lnv C x   .  Back-substituting y
x

 for v then gives the 

solution  ln lny x C x   . 

9. For 0x   we rewrite the differential equation as 
2dy y y

dx x x
    
 

.  Substituting yv
x

  

then gives 2dvv x v v
dx

   , or 2dvx v
dx

 .  Separating variables leads to 2
1 1dv dx
v x

 
, or 1 ln x C

v
   .  Back-substituting y

x
 for v then gives the solution 

ln
xy

C x



. 

10. For , 0x y   we rewrite the differential equation as 3dy x y
dx y x

  .  Substituting yv
x

  

then gives 1 3dvv x v
dx v

   , or 
21 1 22dv vx v

dx v v
   .  Separating variables leads to 

2
1

1 2
v dv dx

v x


  , or  21 ln 1 2 ln
4

v x C   , or 2 42 1v Cx  .  Back-substituting 

y
x

 for v then gives the solution 2 6 22 y Cx x  . 

 Alternatively, the substitution 2v y , which implies that 2v y y   , gives 
21 3

2
x v x v   , or 6 2v v x

x
   , a linear equation in v as a function of x.  An integrat-

ing factor is given by 66exp dx x
x

     
  , and multiplying the differential equation 

by   gives 6 7 56 2x v x v x     , or  6 52xD x v x   .  Integrating then gives 

6 41
2

x v x C     , or 2 62v x Cx   .  Finally, back-substituting 2y  for v then gives 

the solution 2 2 62 y x Cx   , as determined above. 
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11. For 2 2 0x y   and 0x   we rewrite the differential equation as 

22 2

22

1

y
dy xy x
dx x y y

x

 
    

 

.  Substituting yv
x

  then gives 2
2

1
dv vv x
dx v

 


, or 

3

2 2
2

1 1
dv v v vx v
dx v v

  
 

.  Separating variables leads to 
2

3
1 1v dv dx
v v x
 
  , or (after 

decomposing into partial fractions) 2
1 2 1

1
v dv dx

v v x
 

  , or 

 2ln ln 1 lnv v x C    , or 2 1
v Cx

v



.  Back-substituting y

x
 for v then gives the 

solution 
2

1y yCx
x x

     
   

, or finally  2 2y C x y  . 

12. For , 0x y   we rewrite the differential equation as 
22 24 4 1x ydy y y x

dx x y x y
       

 
. 

 Substituting yv
x

  then gives 2
4 1dvv x v

dx v
    , or 

2

2
4 41dv vx

dx v v
   .  

Separating variables leads to 
2

1
4

v dv dx
xv


  , or  1 224 lnv x C   , or 

 224 lnv x C   .  Back-substituting y
x

 for v then gives the solution 

 22 24 lnx y x C   . 

13. For 0x   we rewrite the differential equation as 
22 2

1x ydy y y y
dx x x x x

        
 

. 

 Substituting yv
x

  then gives 21dvv x v v
dx

    , or 21dvx v
dx

  .  Separating vari-

ables leads to 
2

1 1
1

dv dx
xv


  , or (by means of either the substitution tanv   or 

an integral table)  2ln 1 lnv v x C    , or finally 2 1v v Cx   .  Back-

substituting y
x

 for v then gives the solution 2 2 2y y x Cx   . 
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14. For 0x   and 0y   we rewrite the differential equation as 
22 2

1x ydy x x x
dx y y y y

         
 

. 

 Substituting yv
x

  then gives 
2

2
1 1 1 11dv vv x

dx v v v
       , or 

 2 21 1v vdvx
dx v

  
 .  Separating variables leads to 

 2 2

1
1 1

v dv dx
xv v


    .  

The substitution 21u v   gives 
   2 2

1 1
2 11 1

v dv du
u uv v


    , which un-

der the further substitution 1w u   becomes 

21 ln ln 1 ln 1 1dw w u C v
w

           . 

 Thus 2ln 1 1 lnv x C     , or  21 1x v C   .  Back-substituting y
x

 for v then 

gives the solution 
2

1 1 yx C
x

      
   

, or 2 2x x y C   . 

 Alternatively, the substitution 2 2v x y  , which implies that 2 2v x y y    , gives 
1
2

v v  .  Separating variables leads to 1 2dv dx
v

  , or 2 2v x C  .  Back-

substituting 2 2x y  for v then gives the solution 2 2x y x C   , as determined above. 

15. For 0x   and 0x y   we rewrite the differential equation as 

 
 

33

1

y
y x ydy y x

ydx x x y x
x

 
   

 
. 

 Substituting yv
x

  then gives 
23 3

1 1
dv v v vv x v
dx v v

     
 

, or 

2 23 4 2
1 1

dv v v v vx v
dx v v

     
 

. 
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 Separating variables leads to 2
1 1

4 2
v dv dx

v v x
  
  , or 21 ln 4 2 ln

4
v v x C    , or 

 4 24 2x v v C  , or simply  4 22x v v C  .  Back-substituting y
x

 for v then gives the 

solution  2 22x xy y C  . 

The differential equations in Problems 16-18 rely upon substitutions that are generally suggested 
by the equations themselves. 

16. The expression 1x y   suggests the substitution 1v x y   , which implies that 
1y v x   , and thus that 1y v   .  Substituting gives 1v v   , or 1v v   , a 

separable equation for v as a function of x.  Separating variables gives 1
1

dv dx
v


 

.  Under the substitution 2v u  the integral on the right becomes 2
1

u du
u , which after 

long division is 

   22 2 2ln 1 2 2ln 1
1

du u u v v
u

      
 . 

 Finally, back-substituting 1x y   for v leads to the solution 

 2 1 2ln 1 1x y x y x C        . 

17. The expression 4x y  suggests the substitution 4v x y  , which implies that 
4y v x  , and thus that 4y v   .  Substituting gives 24v v   , or 2 4v v   , a sep-

arable equation for v as a function of x.  Separating variables gives 2
1

4
dv dx

v


  , or 

11 tan
2 2

v x C   , or  2 tan 2v x C  .  Finally, back-substituting 4x y  for v leads to 

the solution  2 tan 2 4y x C x   . 

18. The expression x y  suggests the substitution v x y  , which implies that y v x  , 

and thus that 1y v   .  Substituting gives  1 1v v   , or 1 11 vv
v v

    , a separa-

ble equation for v as a function of x.  Separating variables gives 
1

v dv dx
v


  , or (by 

long division) 11
1

dv dx
v

 
  , or ln 1v v x C    .  Finally, back-substituting 

x y  for v gives ln 1y x y C    . 
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The differential equations in Problems 19-25 are Bernoulli equations, and so we solve by means 
of the substitution 1 nv y   indicated in Equation (10) of the text.  (Problem 25 also admits of 
another solution.) 

19. We first rewrite the differential equation for , 0x y   as 3
2

2 5y y y
x x

   , a Bernoulli 

equation with 3n  .  The substitution 1 3 2v y y    implies that 1 2y v  and thus that 
3 21

2
y v v   .  Substituting gives 3 2 1 2 3 2

2
1 2 5
2

v v v v
x x

     , or 2
4 10v v
x x

    , a lin-

ear equation for v as a function of x.  An integrating factor is given by 
44exp dx x

x
     

  , and multiplying the differential equation by   gives 

4 5 6
1 4 10v v
x x x

    , or 4 6
1 10

xD v
x x

    
 

.  Integrating then leads to 4 5
1 2v C
x x
   , or 

5
42 2 Cxv Cx

x x
   .  Finally, back-substituting 2y  for v gives the general solution 

5
2 2 Cxy

x
  , or 2

52
xy
Cx




. 

20. We first rewrite the differential equation for 0y   as 22 6y xy xy   , a Bernoulli equa-
tion with 2n   .  The substitution  1 2 3v y y    implies that 1 3y v  and thus that 

2 31
3

y v v  .  Substituting gives 2 3 1 3 2 31 2 6
3

v v xv xv    , or 6 18v xv x   , a linear 

equation for v as a function of x.  An integrating factor is given by 

  23exp 6 xx dx e   , and multiplying the differential equation by   gives 
2 2 23 3 36 18x x xe v xe v xe   , or  2 23 318x x

xD e v xe  .  Integrating then leads to 
2 23 33x xe v e C   , or 

233 xv Ce  .  Finally, back-substituting 3y  for v gives the general 
solution 

23 33 xy Ce  . 

21. We first rewrite the differential equation as 3y y y   , a Bernoulli equation with 3n  .  

The substitution 1 3 2v y y    implies that 1 2y v  and thus that 3 21
2

y v v   .  Sub-

stituting gives 3 2 1 2 3 21
2

v v v v     , or 2 2v v    , a linear equation for v as a func-

tion of x.  An integrating factor is given by   2exp 2 xdx e   , and multiplying the 

differential equation by   gives 2 2 22 2x x xe v e v e    , or  2 22x x
xD e v e   .  Integrat-
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ing then leads to 2 2x xe v e C    , or 21 xv Ce   .  Finally, back-substituting 2y  for 

v gives the general solution 2 21 xy Ce    , or 2
2
1

1xy
Ce


. 

22. We first rewrite the differential equation for 0x   as 4
2

2 5y y y
x x

   , a Bernoulli equa-

tion with 4n  .  The substitution 1 4 3v y y    implies that 1 3y v  and thus that 
4 31

3
y v v   .  Substituting gives 4 3 1 3 4 3

2
1 2 5
3

v v v v
x x

     , or 2
6 15v v
x x

    , a lin-

ear equation for v as a function of x.  An integrating factor is given by 

6
6 1exp dx
x x

     
  , and multiplying the differential equation by   gives 

6 7 8
1 6 15v v
x x x

    , or 8
6

1 15xD v x
x

    
 

.  Integrating then leads to 

7
6

1 15
7

v x C
x

   , or 
7

615 15
7 7

Cxv Cx
x x

   .  Finally, back-substituting 3y  for v 

gives the general solution 
7

3 15
7

Cxy
x

  , or 3
7
7

15
xy

Cx



. 

23. We first rewrite the differential equation for 0x   as 4 36 3y y y
x

   , a Bernoulli equa-

tion with 4 3n  .  The substitution  1 4 3 1 3v y y    implies that 3y v  and thus that 
43y v v   .  Substituting gives 4 3 463 3v v v v

x
     , or 2 1v v

x
    , a linear equation 

for v as a function of x.  An integrating factor is given by 2
2 1exp dx
x x

     
  , and 

multiplying the differential equation by   gives 2 3 2
1 2 1v v
x x x

    , or 2 2
1 1

xD v
x x

    
 

.  Integrating then leads to 2
1 1v C
x x

  , or 2v x Cx  .  Finally, back-substituting 1 3y  

for v gives the general solution 1 3 2y x Cx   , or   32y x Cx


  . 

24. We first rewrite the differential equation for 0x   as 
2

3

2

xey y y
x



    , a Bernoulli 

equation with 3n  .  The substitution 1 3 2v y y    implies that 1 2y v , and thus that 
3 21

2
y v v   .  Substituting gives 

2
3 2 1 2 3 21

2 2

xev v v v
x


      , or 

2

2
xev v

x



   , a lin-

ear equation for v as a function of x.  An integrating factor is given by 



Section 1.6: Substitution Methods and Exact Equations    71 

Copyright © 2018 Pearson Education, Inc. 

  2exp 2 xdx e   , and multiplying the differential equation by   gives 

2 2 12x xe v e v
x

   , or  2 1x
xD e v

x
  .  Integrating then leads to 2 lnxe v x C   , or 

  2ln xv C x e  .  Finally, back-substituting 2y  for v gives the general solution 

 2 2ln xy C x e   , or  
2

2

ln

xey
C x




. 

25. We first rewrite the differential equation for , 0x y   as 
 

2
1 24

1 1
1

y y y
x x

  


, a Ber-

noulli equation with 2n   .  The substitution  1 2 3v y y    implies that 1 3y v  and 

thus that 2 31
3

y v v  .  Substituting gives 
 

2 3 1 3 2 3
1 24

1 1 1
3 1

v v v v
x x

   


, or 

 1 24

3 3
1

v v
x x

  


, a linear equation for v as a function of x.  An integrating factor is 

given by 33exp dx x
x

    
  , and multiplying the differential equation by   gives 

 
3

3 2
1 24

33
1

xx v x v
x

  


, or    
4

3
1 24

3
1

x
xD x v
x

 


.  Integrating then leads to 

 1 23 43 1
2

x v x C    , or 
 1 24

3

3 1
2
x C

v
x

 
 .  Finally, back-substituting 3y  for v gives 

the general solution 
 1 24

3
3

3 1
2
x C

y
x

 
 . 

 Alternatively, for 0x  , the substitution v xy , which implies that v xy y    and that 
vy
x

 , gives  
2 1 24
2 1v v x x

x
   .  Separating variables leads to 

 
3

2
1 241

xv dv dx
x




  , 

or  1 23 41 1 1
3 2

v x C   , or 
 1 24

3 3 1
2

x C
v

 
 .  Back-substituting xy  for v then gives 

the solution 
 1 24

3
3

3 1
2
x C

y
x

 
 , as determined above. 
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As with Problems 16-18, the differential equations in Problems 26-30 rely upon substitutions that 
are generally suggested by the equations themselves.  Two of these equations are also Bernoulli 
equations. 

26. The substitution 3v y , which implies that 23v y y  , gives xv v e   , a linear equa-

tion for v as a function of x.  An integrating factor is given by  exp 1 xdx e   , and 

multiplying the differential equation by   gives 1x xe v e v   , or   1x
xD e v  .  Inte-

grating then leads to xe v x C   , or   xv x C e  .  Finally, back-substituting 3y  for v 
gives the general solution  3 xy x C e  . 

 Alternatively, for 0y   we can first rewrite the differential equation as 
21 1

3 3
xy y e y    , a Bernoulli equation with 2n   .  This leads to the substitution 

 1 2 3v y y    used above. 

27. The substitution 3v y , which implies that 23v y y  , gives 43xv v x   , or (for 0x  ) 
31 3v v x

x
   , a linear equation for v as a function of x.  An integrating factor is given by 

1 1exp dx
x x

     
  , and multiplying the differential equation by   gives 

2
2

1 1 3v v x
x x

   , or 21 3xD v x
x

   
 

.  Integrating then leads to 31 v x C
x
   , or 

4v x Cx  .  Finally, back-substituting 3y  for v gives the general solution 3 4y x Cx  , 

or  1 34y x Cx  . 

 Alternatively, for , 0x y   we can first rewrite the differential equation as 
3 21

3
y y x y

x
   , a Bernoulli equation with 2n   .  This leads to the substitution 

 1 2 3v y y    used above. 

28. The substitution yv e , which implies that yv e y  , gives  3 22 xxv v x e   , or 

2 22 2 xv v x e
x

   , a linear equation for v as a function of x.  An integrating factor is given 

by 2
2 1exp dx
x x

     
  , and multiplying the differential equation by   gives 

2
2 3

1 2 2 xv v e
x x

   , or 2
2

1 2 x
xD v e

x
   
 

.  Integrating then leads to 2
2

1 xv e C
x
   , or 
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2 2 2xv x e Cx  .  Finally, back-substituting ye  for v gives the general solution 
2 2 2y xe x e Cx  , or  2 2 2ln xy x e Cx  . 

29. The substitution 2sinv y , which implies that  2sin cosv y y y  , gives 24xv x v   , 

or (for 0x  ) 1 4v v x
x

   , a linear equation for v as a function of x.  An integrating fac-

tor is given by 1 1exp dx
x x

     
  , and multiplying the differential equation by   

gives 2
1 1 4v v
x x

   , or 1 4xD v
x

   
 

.  Integrating then leads to 1 4v x C
x
   , or 

24v x Cx  .  Finally, back-substituting 2sin y  for v gives the general solution 
2 2sin 4y x Cx  . 

30. It is easiest first to multiply each side of the given equation by ye , giving 
 y y yx e e y x e   .  This suggests the substitution yv e , which implies that yv e y 

, and leads to  x v v x v   , which is identical to the homogeneous equation in Prob-
lem 1.  The solution found there is 2 22v xv x C   .  Back-substituting ye  for v then 
gives the general solution 2 22y ye xe x C    

Each of the differential equations in Problems 31–42 is of the form 0M dx N dy  , and the 
exactness condition M y N x      is routine to verify.  For each problem we give the princi-
pal steps in the calculation corresponding to the method of Example 9 in this section. 
 

31. The condition xF M  implies that    2, 2 3 3F x y x y dx x xy g y     , and then 

the condition yF N  implies that  3 3 2x g y x y   , or   2g y y  , or   2g y y .  
Thus the solution is given by 2 23x xy y C   . 

32. The condition xF M  implies that    2, 4 2F x y x y dx x xy g y     , and then the 

condition yF N  implies that   6x g y y x    , or   6g y y  , or   23g y y .  
Thus the solution is given by 2 22 3x xy y C    

33. The condition xF M  implies that    2 2 3 2, 3 2F x y x y dx x xy g y     , and then 

the condition yF N  implies that   24 4 6xy g y xy y   , or   26g y y  , or 

  32g y y .  Thus the solution is given by 3 2 32 2x xy y C   . 
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34. The condition xF M  implies that    2 2 3 2 2, 2 3F x y xy x dx x x y g y     , and 

then the condition yF N  implies that  2 2 32 2 4x y g y x y y   , or   34g y y  , or 

  4g y y .  Thus the solution is given by 3 2 2 4x x y y C   . 

35. The condition xF M  implies that    3 41, ln
4

yF x y x dx x y x g y
x

     , and then 

the condition yF N  implies that   2ln lnx g y y x   , or   2g y y  , or 

  31
3

g y y .  Thus the solution is given by 4 31 1 ln
4 3

x y y x C   . 

36. The condition xF M  implies that    , 1 xy xyF x y ye dx x e g y     , and then the 

condition yF N  implies that   2xy xyxe g y y xe   , or   2g y y  , or   2g y y .  
Thus the solution is given by 2xyx e y C   . 

37. The condition xF M  implies that    , cos ln sin lnF x y x y dx x x y g y     , 

and then the condition yF N  implies that   yx xg y e
y y

   , or   yg y e  , or 

  yg y e .  Thus the solution is given by sin ln yx x y e C   . 

38. The condition xF M  implies that    1 2 11, tan tan
2

F x y x y dx x x y g y      , 

and then the condition yF N  implies that  2 21 1
x x yg y
y y

 
 

, or   21
yg y
y

 


, or 

   21 ln 1
2

g y y  .  Thus the solution is given by  2 1 21 1tan ln 1
2 2

x x y y C    . 

39. The condition xF M  implies that    2 3 4 3 3 4, 3F x y x y y dx x y xy g y     , and 

then the condition yF N  implies that  3 2 3 3 2 4 33 4 3 4x y xy g y x y y xy     , or 

  4g y y  , or   51
5

g y y .  Thus the solution is given by 3 3 4 51
5

x y xy y C   . 

40. The condition xF M  implies that 

   , sin tan sin tanx xF x y e y y dx e y x y g y     , 

 and then the condition yF N  implies that 

 2 2cos sec cos secx xe y x y g y e y x y    , 
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 or   0g y  , or   0g y  .  Thus the solution is given by sin tanxe y x y C  . 

41. The condition xF M  implies that    
2 2 2

4 3
2 3, x y x yF x y dx g y
y x y x

     , and then 

the condition yF N  implies that  
2 2

2 3 2 3
2 2 1x y x yg y

y x y x y
       , or   1g y

y
 

, or   2g y y .  Thus the solution is given by 
2 2

3 2x y y C
y x
   . 

42. The condition xF M  implies that 

   2/3 5/2 2/3 3/23,
2

F x y y x y dx xy x y g y        , 

 and then the condition yF N  implies that  5/3 3/2 3/2 5/32 2
3 3

xy x g y x xy        , or 

  0g y  , or   0g y  .  Thus the solution is given by 2/3 3/2xy x y C   . 

In Problems 43-48 either the dependent variable y or the independent variable x (or both) is miss-
ing, and so we use the substitutions in equations (34) and/or (36) of the text to reduce the given 
differential equation to a first-order equation for p y . 

43. Since the dependent variable y is missing, we can substitute y p   and y p   as in 
Equation (34) of the text.  This leads to xp p  , a separable equation for p as a function 

of x.  Separating variables gives dp dx
p x
  , or ln ln lnp x C  , or p Cx , that is, 

y Cx  .  Finally, integrating gives the solution   21
2

y x Cx B  , which we rewrite as 

  2y x Ax B  . 

44. Since the independent variable x is missing, we can substitute y p   and dpy p
dy

   as in 

Equation (36) of the text.  This leads to 2 0dpyp p
dy

  , or , a separable equation for p as 

a function of y.  Separating variables gives dp dy
p y
   , or ln ln lnp y C   , or 

Cp
y

 , that is, dy C
dx y

 .  Separating variables once again leads to y dy C dx  , or 

21
2

y Cx D  , or   21
2

Dx y y
C C

  , which we rewrite as   2x y Ay B  . 
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45. Since the independent variable x is missing, we can substitute y p   and dpy p
dy

   as in 

Equation (36) of the text.  This leads to 4 0dpp y
dy

  , or 4p dp y dy   , or 

2 21 2
2

p y C   , or 2 22 4 2p C y C y     (replacing 
2
C  simply with C in the last 

step).  Thus 22dy C y
dx

  .  Separating variables once again yields 
22

dy dx
C y


  , 

or 
2 22
dy dx

k y


  , upon replacing C with 2k .  Integrating gives 

1
2 2

1 sin
22

dy yx D
kk y

  
 ; solving for y leads to the solution 

     sin 2 2 sin 2 cos2 cos2 sin 2y x k x D k x D x D    , 

 or simply   cos2 sin 2y x A x B x  .  (A much easier method of solution for this equa-
tion will be introduced in Chapter 3.) 

46. Since the dependent variable y is missing, we can substitute y p   and y p   as in 
Equation (34) of the text.  This leads to 4xp p x   , a linear equation for p as a function 
of x which we can rewrite as   4xD x p x   (thus, no integrating factor is needed), or 

22x p x A   , or 2 Ap x
x

  , that is, 2dy Ax
dx x

  .  Finally, integrating gives the solu-

tion   2 lny x x A x B   . 

47. Since the dependent variable y is missing, we can substitute y p   and y p   as in 
Equation (34) of the text.  This leads to 2p p  , a separable equation for p as a function 

of x.  Separating variables gives 2
dp x dx
p

  , or 1 x B
p

   , or 1p
x B

 


, that is, 

1dy
dx x B

 


.  Finally, integrating gives the solution   lny x A x B   . 

 Alternatively, since the independent variable x is also missing, we can instead substitute 

y p   and dpy p
dy

   as in Equation (36) of the text.  This leads to 2dpp p
dy

 , or 

dp dy
p

  , or ln p y C  , or yp Ce , that is, ydy Ce
dx

 .  Separating variables once 

again leads to ye dy C dx   , or ye Cx D   , or 
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 ln ln ln lnD Dy Cx D C x C x
C C

                     
. 

 Putting lnA C   and DB
C

  gives the same solution as found above. 

48. Since the dependent variable y is missing, we can substitute y p   and y p   as in 
Equation (34) of the text.  This leads to 2 3 2x p xp   , a linear equation for p as a func-

tion of x.  We rewrite this equation as 2
3 2p p
x x

   , showing that an integrating factor is 

given by 33exp dx x
x

    
  .  Multiplying by   gives 3 23 2x p x p x   , or 

 3 2xD x p x  , or 3 2x p x C   , or 3
1 Cp
x x

  , that is, 3
1dy C

dx x x
  .  Finally, inte-

grating gives the solution   2ln
2
Cy x x D
x

   , which we rewrite as 

  2ln Ay x x B
x

   . 

49. Since the independent variable x is missing, we can substitute y p   and dpy p
dy

   as in 

Equation (36) of the text.  This leads to 24dppy p yp
dy

  , or dpy p y
dy

  , a linear 

equation for p as a function as a function of y which we can rewrite as  yD y p y  , or 

21
2

y p y C   , or 
2

2
y Cp

y
 , that is, 

2

2
dy y C
dx y

 .  Separating variables leads to 

2
2 y dy dx

y C


  , or  2
2

2 lny dyx y C B
y C

   
 .  Solving for y leads to the solution 

2 x B xy C e Be   , or finally   xy x A Be   . 

50. Since the dependent variable y is missing, we can substitute y p   and y p   as in 
Equation (34) of the text.  This leads to  2p x p   , a first-order equation for p as a 
function of x which is neither linear nor separable.  However, the further substitution 

v x p  , which implies that 1p v   , yields 21v v   , or 21dv v
dx

  , a separable 

equation for v as a function of x.  Separating variables gives 21
dv dx

v


  , or 

arctan v x A  , or  tanv x A  .  Back-substituting x p  for v then leads to 
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 tanp x A x   , or  tandy x A x
dx

   .  Finally, integrating gives the solution 

    21ln sec
2

y x x A x B     

51. Since the independent variable x is missing, we can substitute y p   and dpy p
dy

   as in 

Equation (36) of the text.  This leads to 32pp yp  , or 22p yp  , or 2
1 2dp y dy
p

  , 

or 21 y C
p

   , or 2
1p

y C
 


, that is, 2

1dy
dx y C

 


.  Separating variables once 

again leads to 2y C dy dx    , or 31
3

y Cy x D    , or finally the solution 
3 3 0y x Ay B    . 

52. Since the independent variable x is missing, we can substitute y p   and dpy p
dy

   as in 

Equation (36) of the text.  This leads to 3 1y pp  , or 3
1p dp dy
y

  , or 

2
2

1 1
2 2

p A
y

   , or 
2

2
2

1Ayp
y
 , or 

2 1Ayp
y
 , that is, 

2 1Aydy
dx y

 .  Separat-

ing variables once again yields 
2 1

y dv dx
Ay


  , or 21 1x Ay C

A
   , which we 

rewrite as 2 1Ax B Ay   , leading to the solution  22 1Ay Ax B   . 

53. Since the independent variable x is missing, we can substitute y p   and dpy p
dy

   as in 

Equation (36) of the text.  This leads to 2pp yp  , or 2dp y dy  , or 2p y A  , 

that is, 2dy y A
dx

  .  Separating variables once again yields 2
1 dy dx

y A


  , or 

arctan yA x C
A
  , or  tany Ax B

A
  , or finally the solution    tany x A Ax B  . 

54. Since the independent variable x is missing, we can substitute y p   and dpy p
dy

   as in 

Equation (36) of the text.  This leads to 23ypp p  , or 1 3dp dy
p y

  , or 
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ln 3lnp y C  , or 3p Cy , that is, 3dy Cy
dx

 .  Separating variables once again yields 

the solution 3
1 dy C dx
y

  , or 2
1

2
Cx D

y
   , or  21 2y Cx D   , which we re-

write as  2 1y B x  . 

55. The proposed substitution v ax by c    implies that  1y v ax c
b

   , so that 

 1y v a
b

   .  Substituting into the given differential equation gives    1 v a F v
b

   , 

that is  dv bF v a
dx

  , a separable equation for v as a function of x. 

56. The proposed substitution 1 nv y   implies that  1 1 ny v   and thus that 

 
1 1 111 1

1 1
n nndy dv dvv v

dx n dx n dx
  

 
.  Substituting into the given Bernoulli equation 

yields          1 1 1 11
1

n n n n ndvv P x v Q x v
n dx

   


, and multiplication by  1
1
n n

n
v 

  then 

leads to the linear differential equation      (1 ) 1v n P x v n Q x v     . 

Problems 57-62 illustrate additional substitutions that are helpful in solving certain types of first-
order differential equation. 

57. The proposed substitution lnv y  implies that vy e , and thus that vdy dve
dx dx

 .  Substi-

tuting into the given equation yields    v v vdve P x e Q x ve
dx

  .  Cancellation of the fac-

tor ve  then yields the linear differential equation    dv Q x v P x
dx

  . 

58. By Problem 57, substituting lnv y  into the given equation yields the linear equation 
22 4xv v x   , which we rewrite (for 0x  ) as 2 4v v x

x
   .  An integrating factor is 

given by 22exp dx x
x

    
  , and multiplying by   gives 2 32 4x v xv x   , or 

 2 34D x v x  .  Integrating then leads to 2 4x v x C   , or 2
2

Cv x
x

  .  Finally, back-

substituting ln y  for v gives the solution 2
2ln Cy x

x
  , or 2

2exp Cy x
x

   
 

. 
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59. The substitution y v k   implies that dy dv
dx dx

 , leading to 

 
 

 
 

1 1
3 3

x v k x v kdv
dx x v k x v k

     
 

     
. 

 Likewise the substitution x u h   implies that u x h   and thus that dv dv du dv
dx du dx du

   

(since 1du
dx

 ), giving 

   
   

 
 

1 1
3 3

u h v k u v h kdv
du u h v k u v h k

       
 

       
. 

 Thus h and k must be chosen to satisfy the system 
1 0
3 0

h k
h k
  
  

, 

 which means that 1h    and 2k   .  These choices for h and k lead to the homogene-
ous equation 

1

1

v
dv u v u

vdu u v
u

 
 

, 

 which calls for the further substitution vp
u

 , so that v pu  and thus dv dpp u
du du

  .  

Substituting gives 1
1

dp pp u
du p

 


, or 

2 21 1 2
1 1 1

dp p p p p pu
du p p p

     
  

. 

Separating variables yields 2
1 1

1 2
p dp du

p p u
 

   , or  21 ln 1 2 ln
2

p p u C     , 

or  2 22 1p p u C   .  Back-substituting v
u

 for p leads to 
2

22 1v v u C
u u

       
   

, or 

2 22v uv u C   .  Finally, back-substituting 1x   for u and 2y   for v gives the implic-
it solution 

       2 22 2 1 2 1y x y x C       , 

 which reduces to 2 22 2 6y xy x x y C     . 

60. As in Problem 59, the substitutions x u h  , y v k   give 
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   
   

 
 

2 7 2 2 7
4 3 18 4 3 4 3 18

v k u h v u k hdv
du u h v k u v h k

       
 

       
. 

 Thus h and k must be chosen to satisfy the system 
2 7 0

4 3 18 0
h k

h k
   
  

, 

 which means that 3h   and 2k   .  These choices for h and k lead to the homogeneous 
equation 

2 12
4 3 4 3

v
dv v u u

vdu u v
u

 
 

, 

 which calls for the further substitution vp
u

 , so that v pu  and thus dv dpp u
du du

  .  

Substituting gives 2 1
4 3

dp pp u
du p

 


, or 

2 22 1 4 3 3 2 1
4 3 4 3 4 3

dp p p p p pu
du p p p

     
  

. 

 Separating variables yields 2
4 3 1

3 2 1
p dp du

p p u
 
   .  Now the method of partial frac-

tions gives 

   2
4 3 1 1 15 1 ln 1 5ln 3 1 ln

3 2 1 4 1 3 1 4
p dp dp p p C

p p p p
              , 

 so the solution is given by 
   ln 1 5ln 3 1 ln 4lnp p C u     , 

 or  
 

4
5

1
3 1

C p
u

p





.  Back-substituting v
u

 for p gives 

 
 

4
4

5 5

1

33 1

vC Cu v uuu
v v u
u

     
  

 

, 

 or    53v u C v u   , and finally, back-substituting 3x   for u and 2y   for v yields 
the implicit solution 

   53 3 5y x C y x     . 
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61. The expression x y  appearing on the right-hand side suggests that we try the substitu-

tion v x y  , which implies that y x v  , and thus that 1dy dv
dx dx

  .  This gives the 

separable equation 1 sindv v
dx

  , or 1 sindv v
dx

  .  Separating variables leads to 

1
1 sin

dv dx
v


  .  The left-hand integral is carried out with the help of the trigono-

metric identities 
2

2
1 1 sin sec sec tan

1 sin cos
v v v v

v v
  


; 

 the solution is given by 2sec sec tanv v v dv dx   , or tan secx v v C   .  Finally, 

back-substituting x y  for v gives the implicit solution    tan secx x y x y C     .  
However, for no value of the constant C does this general solution include the “basic” so-

lution  
2

y x x   .  The reason is that for this solution, v x y   is the constant 
2
 , so 

that the expression 1 sin v  (by which we divided above) is identically zero.  Thus the 

solution  
2

y x x    is singular for this solution procedure. 

62. First we note that the given differential equation is homogeneous; for 0x   we have 

 
 

3

3 3

33 3

22
2

2 1

y
y x ydy y x

dx xx y x y
x

         
    

 

, 

 and substituting yv
x

  as usual leads to 

3 4

3 3
2 2
2 1 2 1

dv v v vv x v
dx v v

     
 

, 

 or 
4 3 4

3 3 3
2 2 1

2 1 2 1 2 1
dv v v v v vx v
dx v v v

     
  

, 

 or 
3

4
2 1 1v dv dx
v v x

  
  , after separating variables.  By the method of partial fractions, 

   
3

2
4 2

2 1 2 1 1 1 ln 1 ln ln 1
1 1

v vdv dv v v v v
v v v v v v

         
     , 

 yielding the implicit solution 

   2ln 1 ln ln 1 lnv v v v x C        , 
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 or    2 1 1x v v v Cv    , that is,  3 1x v Cv  .  Finally, back-substituting y
x

 for v 

gives the solution 
3

1y yx C
x x

      
   

, or 3 3x y Cxy  . 

63. The substitution 1
1y y
v

  , which implies that 1 2
1dy dvy

dx v dx
  , gives 

     
2

1 1 12
1 1 1dvy A x y B x y C x
v dx v v

            
   

, 

 which upon expanding becomes 

       

         

2 1
1 1 12 2

2 1
1 1 2

1 1 12

1 12 .

dv yy A x y B x y B x C x
v dx v v v

yA x y B x y C x A x B x
v v v

         
 

       
 

 

 The underlined terms cancel because 1y  is a solution of the given equation 

     2dy A x y B x y C x
dx

   , resulting in 

   1
2 2

1 1 12dv yA x B x
v dx v v v

     
 

, 

 or      12 1dv A x vy B x v
dx

    , that is,  12dv B Ay v A
dx

    , a linear equation for 

v as a function of x. 

In Problems 64 and 65 we outline the application of the method of Problem 63 to the given Ric-
cati equation. 

64. Here   1A x   ,   0B x  , and   21C x x  .  Thus the substitution 1
1 1y y x
v v

     

leads to the linear equation 2 1dv xv
dx

  .  An integrating factor is given by 

  2
exp 2 xx dx e    , and multiplying by   gives 

2 2 2
2x x xdve xe v e

dx
     , or 

 2 2x x
xD e v e   .  In Problem 29 of Section 1.5 we saw that the general solution of this 

linear equation is    2
erf

2
xv x e C x 

  
 

, expressed in terms of the error function 



84    Chapter 1: First-Order Differential Equations 

Copyright © 2018 Pearson Education, Inc. 

 erf x  introduced there.  Hence the general solution of our Riccati equation is given by 

   2

1

erf
2

xy x x e C x


  
   

 
. 

65. Here   1A x  ,   2B x x  , and   21C x x  .  Thus the substitution 

1
1 1y y x
v v

     yields the trivial linear equation 1dv
dx

  , with immediate solution 

 v x C x  .  Hence the general solution of our Riccati equation is given by 

  1y x x
C x

 


. 

66. Substituting    y x Cx g C   into the given differential equation leads to 

   Cx g C Cx g C   , a true statement.  Thus the one-parameter family 

   y x Cx g C   is a general solution of the equation. 

67. First, the line 21
4

y Cx C   has slope C and passes through the point  21 1
2 4,C C ; the 

same is true of the parabola 2y x  at the point  21 1
2 4,C C , because 

1
22 2dy x C C

dx
    .  Thus the line is tangent to the parabola at this point.  It follows 

that 2y x  is in fact a solution to the differential equation, since for each x, the parabola 

has the same values of y and y  as the known solution 21
4

y Cx C  .  Finally, 2y x  is 

a singular solution with respect to the general solution 21
4

y Cx C  , since for no value 

of C does 21
4

Cx C  equal 2x  for all x. 

68. Substituting lnC k a  into  2ln 1 lnv v k x C      gives  

   2ln 1 ln ln ln kv v k x k a x a       , 

 or  21 kv v x a    , or  
2

21kx a v v     , or    2 2 22 1k kx a v x a v v     , 

that is 
2 11 1

2 2

k kk k x xx xv
a a a a

                       
             

. 
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69. With 100a   and 1
10

k  , Equation (19) in the text is 
9 10 11 10

50
100 100

x xy
         
     

.  

We find the maximum northward displacement of plane by setting 

 
1 10 1 109 1150 0

10 100 10 100
x xy x

           
     

, 

 which yields 
1 10 1 29

100 11
x      

   
.  Because 

 
11 10 9 109 1150 0

100 100 100 100
x xy x

             
     

 

 for all x, this critical point in fact represents the absolute maximum value of y.  Substitut-

ing this value of x into  y x  gives 
9 2 11 2

max
9 950 3.68mi
11 11

y
          
     

. 

70. With 
0

10 1
500 10

wk
v

   , Equation (16) in the text gives  2 1ln 1 ln
10

v v x C     , 

where v denotes y
x

.  Substitution of 200x  , 150y  , and 3
4

v   yields 

 1 10ln 2 200C   , which gives 

 
2

1 10
2

1ln 1 ln ln 2 200
10

y y x
x x

 
       

 
. 

 Exponentiation and then multiplication of the resulting equation by x finally leads to 

 1 102 2 92 200y x y x   , as desired.  Note that if 0x  , then this equation yields 
0y  , confirming that the airplane reaches the airport at the origin. 

71. Equations (12)-(19) apply to this situation as with the airplane in flight. 

 (a) With 100a   and 
0

2 1
4 2

wk
v

   , the solution given by Equation (19) is 

1 2 3 2

50
100 100

x xy
         
     

.  The fact that  0 0y   means that this trajectory goes 

through the origin where the tree is located. 

 (b) With 4 1
4

k   , the solution is 
2

50 1
100

xy
     

   
, and we see that the dog hits the 

bank at a distance  0 50fty   north of the tree. 
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 (c) With 6 3
4 2

k   , the solution is 
1 2 5 2

50
100 100

x xy
         

     
.  This trajectory is as-

ymptotic to the positive x-axis, so we see that the dog never reaches the west bank of the 
river. 

72. We note that the dependent variable y is missing in the given differential equation 

 
3 221ry y     , leading us to substitute y   , and y   .  This results in 

 3 221rp    , a separable first-order differential equation for   as a function of x.  

Separating variables gives 
 3 221

r d dx





  , and then integral formula #52 in the 

back of our favorite calculus textbook gives 
21

r x a


 


, that is, 

  22 2 21r x a    .  We solve readily for  
 

2
2

22

x a
r x a





 

, so that 

 
2

22

dy x a
dx r x a

  
 

.  Finally, a further integration gives 

 
 

 22
22

x a
y dx r x a b

r x a


     

 
 , 

 which leads to    2 2 2x a y b r    , as desired. 

 
 

CHAPTER 1 Review Problems 

The main objective of this set of review problems is practice in the identification of the different 
types of first-order differential equations discussed in this chapter.  In each of Problems 1–36 we 
identify the type of the given equation and indicate one or more appropriate method(s) of solu-
tion. 

1. We first rewrite the differential equation for 0x   as 23y y x
x

   , showing that the 

equation is linear.  An integrating factor is given by 3ln 33exp xdx e x
x

       
  , and 

multiplying the equation by   gives 3 4 13x y x y x     , or  3 1
xD x y x   .  Integrat-

ing then leads to 3 lnx y x C    , and thus to the general solution  3 lny x x C  . 
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2. We first rewrite the differential equation for , 0x y   as 2 2
3y x

y x
  , showing that the 

equation is separable.  Separating variables yields 1 3ln x C
y x

    , and thus the gen-

eral solution 
 

1
3 3 lnln

xy
x C xx C

x

 
  

. 

3. Rewriting the differential equation for 0x   as 
22

2
xy y y yy

x x x
       

 
 shows that the 

equation is homogeneous.  Actually the equation is identical to Problem 9 in Section 1.6; 

the general solution found there is 
ln
xy

C x



. 

4. Rewriting the differential equation in differential form gives 

   3 2 22 3 sin 0xM dx N dy xy e dx x y y dy      , 

 and because    2, 6 ,M x y xy N x y
y x
  
 

, the given equation is exact.  Thus we ap-

ply the method of Example 9 in Section 1.6 to find a solution of the form  ,F x y C .  

First, the condition xF M  implies that    3 2 3, 2 x xF x y xy e dx x y e g y     , 

and then the condition yF N  implies that  2 2 2 23 3 sinx y g y x y y   , or 

  sing y y  , or   cosg y y  .  Thus the solution is given by 2 3 cosxx y e y C   . 

5. We first rewrite the differential equation for , 0x y   as 4
2 3y x

y x
  , showing that the 

equation is separable.  Separating variables yields 4
1 2 3xdy dx
y x

  , or 

2 3 3
1 1 1ln xy C C
x x x

      , leading to the general solution 3
1exp xy C

x
   

 
, 

where C is an arbitrary nonzero constant. 

6. We first rewrite the differential equation for , 0x y   as 2 2
1 2y x

y x
  , showing that the 

equation is separable.  Separating variables yields 2 2
1 1 2xdy dx
y x

  , or 
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1 1 2 ln x C
y x

     , that is 1 1 2 lnx x Cx
y x

  , leading to the general solution 

1 2 ln
xy

x x Cx


 
. 

7. We first rewrite the differential equation for 0x   as 3
2 1y y
x x

   , showing that the 

equation is linear.  An integrating factor is given by 2ln 22exp xdx e x
x

     
  , and 

multiplying the equation by   gives 2 12x y xy
x

   , or  2 1
xD x y

x
  .  Integrating 

then leads to 2 lnx y x C   , and thus to the general solution 2
ln x Cy

x
 . 

8. We first rewrite the differential equation for 0x   as 
2

2dy y y
dx x x

   
 

, showing that is it 

homogeneous.  Substituting yv
x

  then gives 2 2dvv x v v
dx

   , or 2 3dvx v v
dx

  .  Sep-

arating variables leads to 2
1 1

3
dv dx

v v x


  .  Upon partial fraction decomposition the 

solution takes the form 1 1ln ln 3 ln
3 3

v v x C     , or 33v C x
v
  , where C is an 

arbitrary positive constant, or 33v Cvx  , where C is an arbitrary nonzero constant.  

Back-substituting y
x

 for v then gives the solution 33y yC x
x x
  , or 33y x Cyx  , or 

finally 3
3

1
xy
Cx




. 

 Alternatively, writing the given equation as 2
2

2 1dy y y
dx x x

   shows that it is a Bernoulli 

equation with 2n  .  The substitution 1 2 1v y y    implies that 1y v  and thus that 
2y v v   .  Substituting gives 2 1 2

2
2 1v v v v
x x

     , or 2
2 1v v
x x

    , a linear equa-

tion for v as a function of x.  An integrating factor is given by 22exp dx x
x

     
  , 

and multiplying the differential equation by   gives 2 3 4
1 2 1v v
x x x

    , or 

2 4
1 1

xD v
x x

    
 

.  Integrating then leads to 2 3
1 1

3
v C

x x
   , or 21

3
v Cx

x
  .  Finally, 
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back-substituting 1y  for v gives the general solution 21 1
3

Cx
y x
  , or 

3
2

1 3
1 1

3

xy
CxCx

x

 


, as found above. 

9. We first rewrite the differential equation for , 0x y   as 1 22 6y y xy
x

   , showing that it 

is a Bernoulli equation with 1 2n  .  The substitution 1 2v y  implies that 2y v  and 

thus that 2y vv  .  Substituting gives 222 6vv v xv
x

   , or 1 3v v x
x

   , a linear equa-

tion for v as a function of x.  An integrating factor is given by 1exp dx x
x

    
  , and 

multiplying the differential equation by   gives 23xv v x   , or   23xD xv x .  Inte-

grating then leads to 3xv x C  , or 2 Cv x
x

  .  Finally, back-substituting 1 2y  for v 

gives the general solution 1 2 2 Cy x
x

  , or 
2

2 Cy x
x

   
 

. 

10. Factoring the right-hand side gives   2 21 1dy x y
dx

   , showing that the equation is 

separable.  Separating variables gives 2
2

1 1
1

dy x dx
y

 
  , or 1 31tan

3
y x x C    , 

or finally 31tan
3

y x x C    
 

. 

11. We first rewrite the differential equation for , 0x y   as 
2

3dy y y
dx x x

    
 

, showing that it 

is homogeneous.  Substituting yv
x

  then gives 23dvv x v v
dx

   , or 23dvx v
dx

 .  Sepa-

rating variables leads to 2
1 3dv dx
v x

  , or 1 3ln x C
v

   , or 1
3ln

v
C x




.  Back-

substituting y
x

 for v then gives the solution 1
3ln

y
x C x



, or 

3ln
xy

C x



. 

 Alternatively, writing the equation in the form 2
2

1 3y y y
x x

    for , 0x y   shows that it 

is also a Bernoulli equation with 2n  .  The substitution 1v y  implies that 1y v  and 

thus that 2y v v   .  Substituting gives 2 1 2
2

1 3v v v v
x x

     , or 2
1 3v v
x x

    , a lin-
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ear equation for v as a function of x.  An integrating factor is given by 
1exp dx x
x

    
  , and multiplying the differential equation by   gives 3xv v

x
    , 

or   3
xD xv

x
  .  Integrating then leads to 3lnxv x C   , or 3ln x Cv

x
  .  Finally, 

back-substituting 1y  for v gives the same general solution as found above. 

12. Rewriting the differential equation in differential form gives 

   3 4 2 2 36 2 9 8 0xy y dx x y xy dy    , 

 and because    3 4 2 3 2 2 36 2 18 8 9 8xy y xy y x y xy
y x
     
 

, the given equation is 

exact.  We apply the method of Example 9 in Section 1.6 to find a solution in the form 
 ,F x y C .  First, the condition xF M  implies that 

   3 4 2 3 4, 6 2 3 2F x y xy y dx x y xy g y     , 

 and then the condition yF N  implies that  2 2 3 2 2 39 8 9 8x y xy g y x y xy    , or 

  0g y  , that is,  g y  is constant.  Thus the solution is given by 2 3 43 2x y xy C  . 

13. We first rewrite the differential equation for 0y   as 4
2 5 4y x x

y

  , showing that the 

equation is separable.  Separating variables yields 4
2

1 5 4dy x x dx
y

   , or 

5 21 2x x C
y

    , leading to the general solution 2 5
1

2
y

C x x


 
. 

14. We first rewrite the differential equation for , 0x y   as 
3dy y y

dx x x
    
 

, showing that it is 

homogeneous.  Substituting yv
x

  then gives 3dvv x v v
dx

   , or 3dvx v
dx

  .  Separat-

ing variables leads to 3
1 1dv dx
v x

   , or 2
1 ln

2
x C

v
  , or 2 1

2ln
v

C x



.  Back-

substituting y
x

 for v then gives the solution 
2 1

2ln
y
x C x

     
, or 

2
2

2 ln
xy

C x



. 

 Alternatively, writing the equation in the form 3
3

1 1y y y
x x

     for , 0x y   shows that 

it is also a Bernoulli equation with 3n  .  The substitution 2v y  implies that 1 2y v  

and thus that 3 21
2

y v v   .  Substituting gives 3 2 1 2 3 2
3

1 1 1
2

v v v v
x x

      , or 
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3
2 2v v
x x

   , a linear equation for v as a function of x.  An integrating factor is given by 

22exp dx x
x

    
  , and multiplying the differential equation by   gives 

2 22x v x v
x

    , or  2 2
xD x v

x
  .  Integrating then leads to 2 2 lnx v x C  , or 

2
2ln x Cv

x
 .  Finally, back-substituting 2y  for v gives the same general solution as 

found above. 

15. This is a linear differential equation.  An integrating factor is given by 

  3exp 3 xdx e   , and multiplying the equation by   gives 3 3 23 3x xe y e y x   , or 

 3 23x
xD e y x  .  Integrating then leads to 3 3xe y x C   , and thus to the general solu-

tion  3 3xy x C e  . 

16. Rewriting the differential equation as  2y x y    suggests the substitution v x y  , 
which implies that y x v  , and thus that 1y v   .  Substituting gives 21 v v  , or 

21v v   , a separable equation for v as a function of x.  Separating variables gives 

2
1

1
dv dx

v


  , or (via the method of partial fractions)  1 ln 1 ln 1
2

v v x C     , 

or 1ln 2
1

v x C
v

  


, or  21 1xv Ce v   .  Finally, back-substituting x y  for v gives 

the implicit solution  21 1xx y Ce x y     . 

17. Rewriting the differential equation in differential form gives 

    0x xy y xye ye dx e xe dy    , 

 and because    x xy xy y xye ye xye e xe
y x
    
 

, the given equation is exact.  We ap-

ply the method of Example 9 in Section 1.6 to find a solution in the form  ,F x y C .  
First, the condition xF M  implies that 

   , x xy x xyF x y e ye dx e e g y     , 

 and then the condition yF N  implies that  xy y xyxe g y e xe   , or   yg y e  , or 

  yg y e .  Thus the solution is given by x xy ye e e C   . 
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18. We first rewrite the differential equation for , 0x y   as 
3

2dy y y
dx x x

    
 

, showing that it 

is homogeneous.  Substituting yv
x

  then gives 32dvv x v v
dx

   , or 3dvx v v
dx

  .  

Separating variables leads to 3
1 1dv dx

v v x


  , or (after decomposing into partial 

fractions) 2 1 1 2
1 1

dv dx
v v v x
  

   , or    
2

ln 2ln
1 1

v x C
v v

 
 

, or 

   
2

2

1 1
v Cx

v v


 
, or    2 2 1 1v Cx v v   .  Back-substituting y

x
 for v then gives the 

solution 
2

2 1 1y y yCx
x x x

          
    

, or finally      2 2 2 2 2y Cx x y x y Cx x y     . 

 Alternatively, rewriting the differential equation for 0x   as 3
3

2 1y y y
x x

     shows 

that it is Bernoulli with 3n  .  The substitution 1 3 2v y y    implies that 1 2y v , and 

thus that 3 21
2

y v v   .  Substituting gives 3 2 1 2 3 2
3

1 2 1
2

v v v v
x x

      , or 

3
4 2v v
x x

   , a linear equation for v as a function of x.  An integrating factor is given by 

44exp dx x
x

    
  , and multiplying the differential equation by   gives 

4 34 2x v x v x   , or  4 2xD x v x  .  Integrating then leads to 4 2x v x C   , or 

 2
4

1v x C
x

  .  Finally, back-substituting 2y  for v gives the general solution 

 2
2 4 2 4

1 1 1 Cx C
y x x x

    , or  
2

4 2 2
2 2 2

1 1 xC x x y
y x y

     
 

, or (for 0C  ) 

   2 2 2 2 2 2 21y x x y Cx x y
C

    , the same general solution found above.  (Note that 

the case 0C   in this latter solution corresponds to the solutions y x  , which are sin-
gular for the first solution method, since they cause 3v v  to equal zero.) 

19. We first rewrite the differential equation for , 0x y   as 3 2
2 2 3y x x

y


  , showing that 

the equation is separable.  Separating variables yields 3 2
2

1 2 3dy x x dx
y

   , or 

2 31 x x C
y

     , leading to the general solution 
2

2 3 5 2
1

1
xy

x x C x Cx 
   

. 
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20. We first rewrite the differential equation for 0x   as 5 23 3y y x
x

   , showing that the 

equation is linear.  An integrating factor is given by 3ln 33exp xdx e x
x

     
  , and 

multiplying the equation by   gives 3 2 1 23 3x y x y x   , or  3 1 23xD x y x  .  Inte-

grating then leads to 3 3 22x y x C   , and thus to the general solution 3 2 32y x Cx   . 

21. We first rewrite the differential equation for 1x   as 2
1 1

1 1
y y

x x
  

 
, showing that 

the equation is linear.  An integrating factor is given by 1exp 1
1

dx x
x

       , and 

multiplying the equation by   gives   11
1

x y y
x

  


, or   11
1xD x y

x
    

.  In-

tegrating then leads to    1 ln 1x y x C    , and thus to the general solution 

 1 ln 1
1

y x C
x

    
. 

22. Writing the given equation for 0x   as 3 2 36 12dy y x y
dx x

   shows that it is a Bernoulli 

equation with 2 3n  .  The substitution 1 2 3 1 3v y y   implies that 3y v  and thus that 
23y v v  .  Substituting gives 2 3 3 263 12v v v x v

x
   , or 32 4v v x

x
   , a linear equation 

for v as a function of x.  An integrating factor is given by 22exp dx x
x

     
  , and 

multiplying the differential equation by   gives 2 32 4x v x v x    , or  2 4xD x v x   .  

Integrating then leads to 2 22x v x C    , or 4 22v x Cx  .  Finally, back-substituting 
1 3y  for v gives the general solution 1 3 4 22y x Cx  , or  34 22y x Cx  . 

23. Rewriting the differential equation in differential form gives 

   cos sin 0y ye y x dx xe x dy    , 

 and because    cos cos siny y ye y x e x xe x
y x
     
 

, the given equation is exact.  

We apply the method of Example 9 in Section 1.6 to find a solution in the form 
 ,F x y C .  First, the condition xF M  implies that 

   , cos siny yF x y e y x dx xe y x g y     , 
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 and then the condition yF N  implies that  sin siny yxe x g y xe x    , or 

  0g y  , that is, g is constant.  Thus the solution is given by sinyxe y x C  . 

24. We first rewrite the differential equation for , 0x y   as 3 2 1 2
2 9y x x

y


  , showing that 

the equation is separable.  Separating variables yields 3 2 1 2
2

1 9dy x x dx
y

   , or 

1 2 3 21 2 6x x C
y

     , leading to the general solution 
1 2

2 1 26 2
xy

x Cx


 
. 

25. We first rewrite the differential equation for 1x    as 2 3
1

y y
x

  


, showing that the 

equation is linear.  An integrating factor is given by  22exp 1
1

dx x
x

       , and 

multiplying the equation by   gives      2 21 2 1 3 1x y x y x     , or 

   2 21 3 1xD x y x      .  Integrating then leads to    2 31 1x y x C     , and thus 

to the general solution 
 21

1
Cy x

x
  


. 

26. Rewriting the differential equation in differential form gives 

   1 2 4 3 1 5 3 2 3/2 1/3 6/5 1/29 12 8 15 0x y x y dx x y x y dy    , 

 and because 

   1 2 4 3 1 5 3 2 1 2 4 3 1 5 1 2 3/2 1/3 6/5 1/29 12 12 18 8 15x y x y x y x y x y x y
y x
     
 

, 

 the given equation is exact.  We apply the method of Example 9 in Section 1.6 to find a 
solution in the form  ,F x y C .  First, the condition xF M  implies that 

   1 2 4 3 1 5 3 2 3 2 4 3 6 5 3 2, 9 12 6 10F x y x y x y dx x y x y g y     , 

 and then the condition yF N  implies that 

 3 2 1 3 6 5 1 2 3/2 1/3 6/5 1/28 15 8 15x y x y g y x y x y    , 

 or   0g y  , that is, g is constant.  Thus the solution is given by 
3 2 4 3 6 5 3 26 10x y x y C  . 

27. Writing the given equation for 0x   as 
2

41
3

dy xy y
dx x

    shows that it is a Bernoulli 

equation with 4n  .  The substitution 3v y  implies that 1 3y v  and thus that 
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4 31
3

y v v   .  Substituting gives 
2

4 3 1 3 4 31 1
3 3

xv v v v
x

      , or 23v v x
x

   , a line-

ar equation for v as a function of x.  An integrating factor is given by 
33exp dx x

x
     

  , and multiplying the differential equation by   gives 

3 4 13x v x v x     , or  3 1
xD x v x   .  Integrating then leads to 3 lnx v x C    , or 

 3 lnv x x C  .  Finally, back-substituting 3y  for v gives the general solution 

  1 31 lny x x C   . 

28. We first rewrite the differential equation for 0x   as 
21 2 xey y

x x
   , showing that the 

equation is linear.  An integrating factor is given by 1exp dx x
x

    
  , and multiply-

ing the equation by   gives 22 xx y y e   , or   22 x
xD x y e  .  Integrating then leads 

to 2 xx y e C   , and thus to the general solution  1 2 xy x e C  . 

29. We first rewrite the differential equation for 1
2

x    as  1 21 2 1
2 1

y y x
x

   


, show-

ing that the equation is linear.  An integrating factor is given by 

 1 21exp 2 1
2 1

dx x
x

       , and multiplying the equation by   gives 

   1 2 1 22 1 2 1 2 1x y x y x     , or  1 22 1 2 1xD x y x      .  Integrating then 

leads to  1 2 22 1x y x x C     , and thus to the general solution 

   1 22 2 1y x x C x     . 

30. The expression x y  suggests the substitution v x y  , which implies that y v x  , 
and thus that 1y v   .  Substituting gives 1v v   , or 1v v   , a separable equa-

tion for v as a function of x.  Separating variables gives 1
1

dv dx
v


  .  The further 

substitution 2v u  (so that 2dv u du ) and long division give 

   1 2 22 2 2ln 1 2 2ln 1
1 11

udv du du u u v v
u uv

        
    , 

 leading to  2 2ln 1v v x C    .  Finally, back-substituting x y  for v leads to the 

implicit general solution  2 2ln 1x x y x y C      . 
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31. Rewriting the differential equation as 2 23 21y x y x    shows that it is linear.  An inte-

grating factor is given by   32exp 3 xx dx e    , and multiplying the equation by   

gives 
3 3 32 23 21x x xe y x e y x e     , or  3 3221x x

xD e y x e   .  Integrating then leads to 
3 3

7x xe y e C     , and thus to the general solution 
3

7 xy Ce   . 

 Alternatively, writing the equation for 7y    as 23
7

dy x dx
y




 shows that it is separa-

ble.  Integrating yields the general solution   3ln 7y x C   , that is, 
3

7xy Ce  , as 
found above. 

 (Note that the restriction 7y    in the second solution causes no loss of generality.  The 
general solution as found by the first method shows that either 7y    for all x or 7y    
for all x.  Of course, the second solution could be carried out under the assumption 

7y    as well.) 

32. We first rewrite the differential equation as  3dy x y y
dx

  , showing that the equation is 

separable.  For 1y   separating variables gives 3
1 dy x dx

y y


  , and the method of 

partial fractions yields 

   
2

3
11 1 1 1 ln

2 1 2 1
ydy dy

y y y y y y
    

    , 

 leading to the solution 
2

21 1ln
2

y x C
y
   , or 

22 21 xy Cy e  , or finally 

2

1

1x
y

Ce



. 

 Alternatively, writing the given equation as 3dy xy xy
dx

   shows that it is a Bernoulli 

equation with 3n  .  The substitution 2v y  for 0y   implies that 1 2y v  and thus 

that 3 21
2

y v v   .  Substituting gives 3 2 1 2 3 21
2

v v xv xv     , or 2 2v xv x    , a 

linear equation for v as a function of x.  An integrating factor is given by 

  2
exp 2 xx dx e    , and multiplying the differential equation by   gives 

2 2 2
2 2x x xe v xe v xe      , or  2 2

2x x
xD e v xe    .  Integrating then leads to 

2 2x xe v e C    , or 
2

1xv Ce  .  Finally, back-substituting 2y  for v gives the same 
general solution as found above. 
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33. Rewriting the differential equation for , 0x y   in differential form gives 

 2 23 2 4 0x y dx xy dy   , 

 and because  2 23 2 4 4x y y xy
y x
   
 

, the given equation is exact.  We apply the 

method of Example 9 in Section 1.6 to find a solution in the form  ,F x y C .  First, the 
condition xF M  implies that 

   2 2 3 2, 3 2 2F x y x y dx x xy g y     , 

 and then the condition yF N  implies that  4 4xy g y xy  , or   0g y  , that is, g is 
constant.  Thus the solution is given by 3 22x xy C  . 

 Alternatively, rewriting the given equation for , 0x y   as 3 1
4 2

dy x y
dx y x

    shows that it 

is homogeneous.  Substituting yv
x

  then gives 3 1
4 2

dvv x v
dx v

    , or 
23 3 3 6

4 2 4
dv vx v
dx v v

     .  Separating variables leads to 2
4 1

6 3
v dv dx

v x
 

  , or 

 2ln 6 3 3lnv x C    , or  2 32 1v x C  .  Back-substituting y
x

 for v then gives the 

solution 
2

32 1y x C
x

      
   

, or finally 2 32 y x x C  , as found above. 

 Still another solution arises from writing the differential equation for , 0x y   as 
11 3

2 4
dy xy y
dx x

   , which shows that it is Bernoulli with 1n   .  The substitution 

2v y  implies that 1 2y v  and thus that 1 21
2

y v v  .  Substituting gives 

1 2 1 2 1 21 1 3
2 2 4

xv v v v
x

     , or 1 3
2
xv v

x
    , a linear equation for v as a function of x.  

An integrating factor is given by 1exp dx x
x

    
  , and multiplying the differential 

equation by   gives 
23

2
xx v v    , or  

23
2x
xD x v   .  Integrating then leads to 

3

2
xx v C    .  Finally, back-substituting 2y  for v leads to the general solution 

3
2

2
xx y C    , that is, 2 32xy x C  , as found above. 
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34. Rewriting the differential equation in differential form gives 
   3 3 0x y dx x y dy    , 

 and because    3 3 3x y x y
y x
    
 

, the given equation is exact.  We apply the 

method of Example 9 in Section 1.6 to find a solution in the form  ,F x y C .  First, the 
condition xF M  implies that 

   21, 3 3
2

F x y x y dx x xy g y     , 

 and then the condition yF N  implies that  3 3x g y x y   , or  g y y   , or 

  21
2

g y y  .  Thus the solution is given by 2 21 13
2 2

x xy y C   , or 
2 26x xy y C   . 

 Alternatively, rewriting the given equation for , 0x y   as 
1 3

3

y
dy x

ydx
x





 shows that it is 

homogeneous.  Substituting yv
x

  then gives 1 3
3

dv vv x
dx v

 


, or 
2 6 1

3
dv v vx
dx v

  


.  

Separating variables leads to 2
3 1

6 1
v dv dx

v v x
 

    , or  2ln 6 1 2lnv v x C     

, or  2 2 6 1x v v C    .  Back-substituting y
x

 for v then gives the solution 
2 26y xy x C     found above. 

35. Rewriting the differential equation as  2
2 1

1
dy x y
dx x

 


 shows that it is separable.  For 

1y    separating variables gives 2
1 2

1 1
xdy dx

y x


   , or    2ln 1 ln 1y x C    , 

leading to the general solution  2 1 1y C x   . 

 Alternatively, writing the differential equation as 2 2
2 2

1 1
x xy y

x x
  

 
 shows that it is 

linear.  An integrating factor is given by 2 2
2 1exp

1 1
x dx

x x
        , and multiply-

ing the equation by   gives 
   2 22 2 2

1 2 2
1 1 1

x xy y
x x x

  
  

, or 
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 22 2

1 2
1 1

x
xD y

x x
     

.  Integrating then leads to 2 2
1 1

1 1
y C

x x
  

 
, or thus to the 

general solution  21 1y C x     found above. 

36. Rewriting the differential equation for 0 x   , 0 1y   as cotdy x dx
y y




 shows 

that it is separable.  The substitution 2y u  gives 

   1 2 ln 1 ln 1
1

dy du u y
uy y

      
  , 

 leading to the general solution  ln 1 lnsiny x C    , or  sin 1x y C  , or final-

ly  2csc 1y C x  . 

 Alternatively, writing the differential equation for 0 x   , 0 1y   as 

   cot cotdy x y x y
dx

   shows that it is Bernoulli with 1
2

n  .  The substitution 
1 2v y  implies that 2y v  and thus that 2y v v   .  Substituting gives 

   22 cot cotv v x v x v   , or  1 1cot cot
2 2

v x v x   , a linear equation for v as a 

function of x.  An integrating factor is given by 1exp cot sin
2

x dx x    
  , and mul-

tiplying the differential equation by   gives 

 1 1sin sin cot sin cot
2 2

x v x x v x x   , 

 or 1sin sin cot
2xD x v x x     .  Integrating then leads to sin sinx v x C   , or 

1 cscv C x  .  Finally, back-substituting 1 2y  for v leads to the general solution 

 2
1 cscy C x   found above. 

  




